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We consider the electromagnetic field in a cavity with a periodically oscillating perfectly reflecting boundary
and show that the mathematical theory of circle maps leads to several physical predictions. Notably, well-
known results in the theory of circle mapshich we review briefly imply that there are intervals of param-
eters where the waves in the cavity get concentrated in wave packets whose energy grows exponentially. Even
if these intervals are dense for typical motions of the reflecting boundary, in the complement there is a positive
measure set of parameters where the energy remains bol&d€$3-651X99)08106-4

PACS numbdps): 05.45—a, 42.60.Da, 02.30.Jr, 42.15.

[. INTRODUCTION ergy density radiated by a moving mirror is equal to the
Schwarzian derivative of the motion of the mirféor details

In this paper, we consider the behavior of the electromagsee Sec. IVE This Schwarzian derivative is a differential
netic field in a resonator, one of whose walls is at rest and theperator frequently used in the theory of one-dimensional
other moving periodically. The main point we want to makedynamical systems and particularly in the theory of circle
is that several results in the mathematical literature of circlénaps. - _
maps immediately yield physically important conclusions. ~ The plan of the exposition is the following. In Sec. Il we

The problem at hand is mathematically simiitire equa- sh0\_/v how the phys[cal problem. can be_ formulatgd in terms
tion is the same but the boundary conditions djffer the of circle maps. Section Ill contains a prlef exposn_lon of the
study of the motion of vibrating strings with a periodically necessary facts fror_n the theory of circle maps; m_Sec. v
moving boundary1,2], or the classical electromagnetic field these f.aCtS are applled to the problem at hand and illustrated
in a periodically pulsating cavita,4]. It is connected with numerically, and in the conclusion we discuss the advantages

the vacuum quantum effects in such regiérb]. The prob- of our approach.
lem is also of practical importance, e.g., for the formation of
short laser pulsef7].

The goal of this paper is to show that the problem of a A. Description of the system

classical wave with a periodically moving boundary can be \ye consider a one-dimensional optical resonator consist-
easily reformulated in terms of the study of long-term behav-ng of two parallel perfectly reflecting mirrors. For simplicity
ior of circle maps and, therefore, that many well-known re-of notation, we will consider only the situation in which one
sults in this theory lead to physical predictions. In particular,qof them is at rest at the origin of theaxis while the other
we give proofs of several results obtained numerically byone is moving periodically with perio@. The case where the
Cole and Schievd4] and others. Extensions of this ap- two mirrors are moving periodically with a common period
proach, which will be discussed elsewhere, allow us to reacban be treated in a similar manner. We assume that the reso-
conclusions for some quasiperiodic motions of small ampli-nator is empty, so that the speed of the electromagnetic
tude or possibly for nonhomogeneous media. waves in it is equal to the speed of lightThe speed of the
In the case of more than one spatial dimension, the analanoving mirror cannot exceec
gous problen{8] is much more complicated, so the predic- We note that the experimental situation does not neces-
tions are not as clear as in the one-dimensional case and vgarily require that there is a physically moving mirror. One
will not discuss them further. experimental possibility—among others—would be to have
We emphasize that the mathematical theory presented & material that is a good conductor or not depending on
completely rigorous and, hence, the physical predictionsvhether a magnetic field of sufficient intensity is applied to
made are general for the assumptions stated. it, and then have a magnetic field applied to it in a changing
There are other intriguing relations for which we have noregion. This induces reflecting boundaries that are moving
conceptual explanation. We observe that a calculation ofvith time. Note that the boundaries of this region could
Fulling and Davieq9] leads to the conclusion that the en- move even faster thagy hence the study of mirrors moving
at a speed comparable ¢ds not unphysicaleven if in that
case one would also have to discuss corrections to the
*Electronic address: llave@math.utexas.edu boundary conditions depending on the details of the experi-
Electronic address: npetrov@math.utexas.edu mental realizations

II. PHYSICAL SETTING
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We shall use dimensionless timand length connected =X-T} and {x+t=X+T} emanating from this pointin
with the physical(i.e., dimensional time t, and length more physical terms, this corresponds to two rays moving to
L phys BY t:=tpnye/ T, 1:=1gnys/ (CT). the right and to the left at unit speedhese lines are called

Let the coordinate of the moving mirror be=a(t), characteristics, and the method of solving E(&3) and
wherea is a CX function (k=1,...,0,) satisfying the con- (2.4) by using the representati@®.5) is called the method of
ditions characteristicgsee, e.g.[10,11)).

a(t)>0, |a'(t)|<1, a(t+1)=a(t). (2.1 B. Method of characteristics, boundary condition

. . e i at the moving mirror, and Doppler shift at reflection
The meaning of the first condition is that the cavity does not

collapse, the second one means that the speed of the moving TO obtain the boundary conditions at the stationary mir-
mirror cannot exceed the speed of light, and the third one i§0f, We note that the electric field, i.e., the temporal deriva-
that the mirror's motion is periodic of period 1. An example, tive of the vector potential, must vanish at this mirror, which

tion:

a 1 a
a(t)=§+,85in 27t |’8|<Z’ 0<|,8|<§ . A(t,00=0. 2.7
(2.2 o ) )
The boundary condition at the moving mirror can be eas-
Since there are no charges and no currents, we impose tlilg obtained by performing a Lorenz transformation from the
gauge conditionsAy=0, V-A=0 on the 4-potentialA,  |aboratory frameK to the inertial frameék comoving with the
=(Ao,A), and obtain thah satisfies the homogeneous wave moving mirror at some particular moment The temporal

equation. We consider plane waves travelingidirection,  and spatial coordinates K, t, andx, are related to the ones
so that without loss of generality, we assume th&t,x) % T andx by

=A(t,x)e,, and obtain thai\(t,x) must satisfy the homo-
geneous (% 1)-dimensional wave equation,

t—to=1t coshZ+%sinh,
A(t,x) —A(t,x) =0, (2.3 (2.9

in the domair, :={(t,x) € R?|to<t,0<x<a(t)}. It will also x—a(ty) =T sinh¢ +T coshe,
need to satisfy some boundary conditions that will be speci-

fied in Sec. Il B, and appropriate initial conditions, where tankt=a'(t). In the comoving frame, the boundary

condition is A7(0,0)=0, which, together with Eq(2.8),
Ao X)=1h(X), AltoX)=uo(¥). @4  Jodl (00) g 928

Before discussing the boundary conditions and the
method of solving the boundary-value problem in the do- s _ , B
main 3, let us discuss the way of solving E(@.3 in the V1-a'()7AI(0,0=A(t.alt) +a (t)AX(t,a(t))—O,Z 9
absence of spatial boundaries, i.e., in the domfgjrct, x 2.9
eR}. It is well known that in this case, the solution of the

The method of characteristics developed in Eg<) and
(2.6) for situations with no boundaries can be adapted to
provide rather explicit solutions for systems in spatially
bounded space-time domains satisfying E8.9) at the
goundaries(see, e.g.f12, Chap. ]).

The prescription is the following. The solution of the
boundary-value problen2.3), (2.4), (2.7), and (2.9 in the
domainy is a superposition of two functions that are con-
stant on the straight pieces of the characteristics and change
their sign at each reflection. To fir&(t,x), one has to con-
sider the two characteristicg~ and y* passing through
(t,x), and propagate them backwards in tifaecording to
where/ is an arbitrary constarithe same folr ™ and¥~).  the rule that, upon reaching a mirror, they change direction

The representatiof2.5) has a simple geometrical mean- of propagatioh until they reach the lingtime=ty} at the
ing: the value ofA(t,x) is a superposition of two functions, points ¢q,%,) and ¢o,X, ), respectively,—see Fig. 1. Then
¥ (x,) and W *(xy), the former being constant along the A(t,x) is given by
lines {x—t=cons}, and the latter being constant alofig
+t=cons}. The disturbances at a space-time pdifX) N et Nttt
propagate in the space-time diagram along the lipest AtX)=(=1)"-¥" (X)) +(=1)™¥7(xg), (2.10

A(t,x)=T"(xg)+¥T(xg), (2.5

where xg :=x* (t—ty), and ¥~ and ¥* are functions of
one variable that are selected to match the initial condition
(2.4). The explicit expressions fo= follow from the
d’Alembert’s formula(see, e.g.[10]),

N 1
TE(s)=5 , (2.6

Ya(s) % J;Ms')ds'
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b A T sl = 1-tans 1-a’(0)
(0)=g7=tan 7= T 1+tansd 1+a'(6)
(2.11

Thus, the absolute values of the temporal and spatial deriva-
tives of the field increase by a factorbf 0) after reflection.
This implies that if in the space-time domain between the
two characteristics, the values of the corresponding deriva-
tives of the field before reflection are denotedAyandA, ,

then after reflection they will become-D(8)A; and
D(6)A,, respectively. Hence, in the space-time domain of
the overlap the derivatives of the field will be

A(0,a(0))=A—D(0)A;,
(2.12
A (8,a(0))=A+D(H)A,.

Now, we will show that the modified method of characteris-
tics is consistent with the boundary conditi¢h9). We note
thatA,= —A,, which simply means that before reflection the
. - rays are moving to the right at unit speed. If we multiply the
whereN; are the number of reflections of" on the way se)::ond equatign of Eq%2.12) by a9(0)=[1—D(0)]l/)[)1/

back from(t,) to (tg,Xg). In Sec. 11 C we will give explicit +D(6)] [which follows from Eq.(2.11] and add it to the

FIG. 1. FindingA(t,x) by the method of characteristics.

formulas forxy andA(t,x) in terms of circle maps. first, we obtain exactly the boundary conditith9).
Indeed, because the solutidd.10 is the sum of two The same prescription gives a solution of the Dirichlet

functions constant along the straight pieces of the CharaCteb'roblemA(t,O)zA(t,a(t))=0. Similar methods can be de-
istics, the wave equation is satisfied in the interior. Also, th&e|oped for other boundary conditions. Unfortunately for the
initial conditions are easily verified because fort, small, widely considered Neumann boundary conditions the repre-
Xo andx, are close to [see Eq(2.17)]. sentation by reflected characteristics is not straightforward
To check that this prescription also satisfies the boundaryhen a’(t)#0.
conditions, we need another argument. Consider the space- we note that the method of characteristics also yields in-
time diagram of the reflection of the field between two in- formation in the important case when the medium is inho-
finitesimally close characteristics reflected by the mOVingmogeneous and perhaps time dependent. This is a physically
mirror at time ¢, shown in Fig. 2. The world line of the natural problem since in many applications we have cavities
mirror is denoted byn, the angles between it, and the time  fjjled with optically active media whose characteristics are
direction is connected with the mirror’s velocity at reflection changed by external perturbations. In this case, the method
by tans=a’(6). The Doppler factor at reflectio(6) is de-  of characteristics does not yield an exact solution as above
fined as the ratio of the spatial distanck®ind A" between  pyt rather, it is the main ingredient of an iterative procedure
the characteristics before and after reflection: [11]. Physically, what happens is that in inhomogeneous me-
dia, the waves change shape while propagating in contrast
with the propagation without change in shape in homoge-
neous medi#2.5). We plan to come to this problem in a near
future.

C. Using circle maps to solve the boundary-value problem
(2.3, (2.9, (2.7, and (2.9 in the domain X

We now reformulate the method of characteristics into a
problem of circle maps.

We consider a particular characteristic and denotéhy
the times at which it reaches the stationary mirror &§6g
the times at which it reaches the oscillating one; lek.z,
<O0,<T7h+1<6,:1<... Note that, with this notation,

Ta=60h—a(6,)=(ld—a)(6,),
(2.13
Thr1=Ohta(6,)=(ld+a)(6y,),

FIG. 2. Reflection by the moving mirror. where Id is the identity transformation. Therefore,
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Tae1=(Id+a)o(Id—a) "Y(7,) =:F(7y), Xo =h(6=, .to):=|(Id—a)(6=, )—to|. (2.17
(2.19 - -
0, 1=(Id—a) " Lo(Id+a)(6,)=:G(6,). Thus, the formula for the vector potential is

We refer toF andG as the time advance maps. They allow  A(t,x)=(—1)N-W eh[G ™ "-o(a+1d) " 1(t—x),to]
us to compute the time of reflection on one side in terms of N+ n 1
the time of the previous reflection on the same side. The (=)W Teh[G T ro(a—1d) Tt =X), L]

conditions(2.1) on the range o anda’ guarantee that (Id (2.18

—a) is invertible and thaf and G are C* (by the implicit

function theorem If l,//lECZ, l/IZECl, and ae Cz, then Eq3(217) and
When the functiora is 1 periodiC,F andG Satisfy (21& prOVide us with a classical SOIUtidm.e., the second

partial derivatives exist in the classical senard it satisfies
Egs.(2.3), (2.4), (2.7), and(2.9).
Even if ¢, ,, anda are less regular, Eq$2.17) and

i (2.18 can be shown to be a solution of Eg.3) in the sense
These relations mean tha(t) andG(t) depend only on the ¢ yistributions. Provided that, and, are continuous, Eq.

fractional part oft. In physical terms, we characterize a re- (2.4) will be satisfied. Provided thate C!, the argument
flection of a ray by the phase of the oscillating mirror when g .o canted above shows that E€57) and(2.9) are satisfied.
the impact takes place, i.e., by the time of reflection modulo  pomark The argument we used to derive H8.6) also
1; if we know the phase at one reflection, we can computgpsws that whem e CL Y eCl, andy,e CO in Eq. (2.6)

the phase at the next impact. Mathematically, this means th3fis is the only weak solution in the space of distributions.
F andG can be regarded as lifts of maps fr@h=R/Z to S To that effect note that, in the coordinatés x-+t, 7=x
(see Sec. Il . —t, Eq. (2.3 reads

We want to argue that the study of the dynamics of the
circle maps(2.14) leads to important conclusions for the
physical problem, which we will take up after we collect d¢0,A=0. (219
some information about the mathematical theory of circle L . . :
maps. In particular, many results in the mathematical literat € ONly distribution weak solutions of this equation are

ture are directly relevant for physical applications. This is

Fit+1) =F()+1, G(t+1)=G(t)+1. (2.15

natural because the long-term behavior of the solution can be A&, n)=D (&) +Dy(7), (2.20
obtained by repeated application of the time advance maps
[see Eq(2.18]. with &, and®, distributions.

We call attention to the fact that The argument leading to E@2.18 shows that the only

distribution of the form(2.20, which satisfy the initial and

the boundary conditions, is precisely EG.18. Of course,
whenae C?, ;e C?, andy, e Cl, the solution is the only
classical solution. Even if the above argument is quite satis-
factory in the case of constant coefficients, when the speed of
light depends on the position or on the time, the uniqueness
theory is more complicated since the equation does not re-

G"=(ld+a) "F"(ld+a)=(ld—a) *F"(ld—-a). duce to the simple fornf2.19 and one has to use energy
methods, etc[[12], Sec. 11 7.

In dynamical systems theory this is usually described as say-
ing that the map$& andG are “conjugate” (see Sec. Il ¢

In our situation, this comes from the fact tHatand G are o ) ) o
physically equivalent descriptions of the relative phase of 1he method of characteristics gives a very illuminating
different successive reflections: advances ther variables ~ Picture of the mechanism of the change of the field energy,

while G advances thé@'s, and thef's are related to the's by

G=(ld+a) Feo(ld+a)=(ld—a) *Fe(ld—a),
(2.16

so that

D. Energy of the field

Eq. (2.13. a_, 1 [am , ,
Now, we use circle maps to derive an explicit formula for E(D)= fo THtX)= 5 jo [A(tX)"+A(t,x)7]dX,
the solution of the boundary-value proble(@.3), (2.4), (2.21)

(2.7), and(2.9) in the domain. Let us trace back in time the

characteristicsy” and y" coming “from the past” to the  due to the distortion of the wave at reflection from the mov-
space-time point(t,x)—see Fig. 1. Let6;:=(a*Id)"*(t  ing mirror. Indeed, consider the change of the energy of a
—X) be the last moments the characteristicsare reflected very narrow wave packet at reflection from the moving mir-
by the moving mirror, and Ieﬁfk:G"‘( 05). After N, ror at time . Since at reflection the temporal and the spatial
respectivelyN _, reflections on the way backwards in time distances decrease by a factor@f6), |A; and|A,| will

(out of whichn, respectivelyn_, are from the moving mir- increase by a factor dd (). Therefore, the integrand of the
ror), the characteristig’*, respectivelyy~, crosses the line energy integral will increasB (6)? times, while the support
{time=t,}. The spatial coordinate of the intersectionyf  of the integrandi.e., the spatial width of the wave packet at
and{time=t,} can be easily seen to be time t) will shrink by a factor ofD(6). Hence, the energy of
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the wave packet after reflection will H2(6) times greater A simple and intuitively clear formula for the rate of
than its energy before reflection. change of the field energy can be obtained by using Egs.
In the general case, one can use 418 and obtain the (2.21), (2.3), (2.7), and(2.9), and integrating by parts:

energy of the system at timeFor the sake of simplicity, we
will give the formula only under the assumption that at time , 2
t all the rays are going to the right, i.e., assuming that the E’(t)=—a’(t)i Adta®)+a’(DA(ta()
vector potential is of the formA(t,x)=(—1)N-¥"(xg). 8w vi=a'(t)

Let us introduce the “local Doppler factor,”

1. -
=—a’(t)8—A;(O,0)2=—a’(t)Tll(O,O)
1-a'(62,) ) 4

~1rag,) (&) () =—a’ (OPrad 1=0)= —a" () Prad V).
(2.22

J
D(to. X it)+=| 5:N( 6, to)
whereP,,(t=0)=T1%0,0) is the radiation pressure i,
It has the physical meaning of the ratio of the frequencies oind we have used the fact that the pressure is relativistic
the incident wave and the wave at timh¢cf. Eq. (2.1D].  invariant[[13], Sec. 45. This fact and Eq(2.12 yield
Note thatD(tg,X, ;t) is equal to the derivative o6~ "-
multiplied by a factor, which is bounded and bounded away 1—a’(t) Ai
from 0 independently ofi_ [due to the fact thaia’(t)|<1]. Pradt) =2 ———~ —.
From Egs.(2.18 and (2.17 we obtain that the square of 1+a’(t) 4m

e . 0
D(to.X, ;) is the ratio of the energy densit’(t,x) and 1 is worth noting that the expression for the radiation pres-

the initial energy densityr*(to,x, ): sure has been derived from the postulates of special relativity
by Einstein in his famous first paper on the subjdef] (see
TOt,x)=2|(¥ )" (Xg)|?D(tg,Xg ;1)? also[15], [13], Sec. 32.
=T%%T0.%0)D(to.Xg ;t)%. E. The inverse problem: Determining the mirror's motion

. . iven the circle ma
On the other handd (tg,X, ;t) is connected with the Jaco- o 9 P ) )
bian of the change of coordinateg—x by It is important to know whether the notion of a “typical”

G is the same as the notion of a “typicall or a “typical”
F (in the mathematical literature people speak about “ge-
neric” maps, and in physical literature about “universal”
maps. We do not know the answer to this question, and here
we will give some arguments showing that the answer is not
Hence, the energy of the system at titrie obvious. In this paper we will not use “generic” or “uni-
versal”. Rather we will make explicit the nondegeneracy
at) assumptions so that they can be checked in the concrete ex-
E(t):j T%ty,Xg)D(tg,Xg ;)dXy . (2.23  amples. In Sec. IV D we will show that some universal prop-
0 erties for families of circle maps do not apply @ con-

Note that since the local Doppler factor squared is thestructed according to Eq2.14 with a(t) =a+eb(t).
ratio of the energy densities at two consecutive reflection VVhile the functiona can be expressed in terms Bfas
points, then it satisfies the following multiplicative property. 8= 3(F—1d)<[7(F+Id)] %, the relation betwee6 andais
Let (t1,X1),(t2,X5),...,({tx, X ) be space-time points on the much harder to invert. We should have
characteristic connectindd,x, ) and(t,x), such that at all of
them Lhe rays are going to the right, and tigtt; <...<ty a(0)+a(G(9)=56(0), (2.25
<t. Then

-1

ax -
=D(to.xg i) %

IXg

IXg
X

whereG(6):=G(6)— 6, so for anyn,
D(tg,Xg ;t)=D(tg,Xq ;t1)D(t1,X1 ;t2)...D(tk_1, X 1:tk)
a(0)=G(6)—G(G(8)+...+(—1)"G(G"(9))

+ ( _ l)n+la(Gn+1( 0))

XD(tg, X ;t).

As can be seen from E@2.22), this multiplicative property
is closely related to the chain rule for diffeomorphisms, Hence, if G2X(6,) = f,(mod 1), a necessary condition for
the existence od is that
(G"'()=G'(G"*(6)G'(G""*(9))...G'(8).
(2.29 2k—1
_ZO (—1)'G(G'(6,))=0. (2.26
=

The mathematical theory of dynamical systems contains
many results about derivatives of highly iterated maps as
above(2.24. In Sec. IV C we will be able to translate some An example of &G where the above condition is not satisfied

of them into asymptotic properties of the field energy. can be readily constructed. We furthermore note that if a
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map fails to satisfy Eq(2.26) and if (G?)'(6,) # 1, then all A. Rotation number
small C! perturbations will also fail to satisfy Eq2.26).
Thus, there areC! neighborhoods of maps that cannot be
realized a<s for a moving mirror.

On the other hand, given very simpl&s, it is easy to
construct infinitely many’s that satisfy Eq(2.25 and that,
therefore, lead to the san@. For example, forG(#)=6
+3, Eq. (2.25 amounts toa(f+3)+a(d)=3. If we pre-
slcribea for 6 in [0, 3], then this equation determineson ")
[4, 1] (the only care needs to be exercised so that the two . F'(x)—x
determinations of match atd=3). A similar construction TO(F)’zr!ml n+ 7(f)=mo(F)(mod 1) 3.
works whenG permutes several intervals. -

In the case whel®s is conjugate to an irrational rotation,
G=h"1R,°h, then Eq.(2.25 is equivalent to

A very important number to associate to a map of the
circle is its rotation number, introduced by Poincalteis a
measure of the average amount of rotation of a point along
an orbit.

Definition 1.Let f:S'—S! be an orientation preserving
homeomorphism ane:R—R a lift of f. Define

and call7(f ) arotation numberof f.

1 1 _1 It was proved by Poincarhat the limit in Eq.(3.1) exists
ach™°R,+ach™*=h""R,~—h"". and is independent of Hence,r(f) is well defined.

The rotation number is a very important tool in classify-

o 71 i i i i - . . .
Thenah™" can be determined using Fourier analysis, set;,'the nossible types of behavior of the iterates of the OPHs

7 -1 — 0 ~ ~2miko -1 —
tlngx h 2(2)_ 9+.EK=*°°Tke e ach™(0)=0 o St. The simplest example of an OPH 8t is the rotation
+35_ . e®™*?, which leads to by @ onS'=R/Z, r ,:x—x+a (mod 1) (corresponding to a
rotation by 2ra radians orS' thought of as the unit circle in
(e2ikay 1)1}k:(e2wika_1)'7\_k. (2.27) C). The mapR, :x—x+« is a lift of r,, and 7(r )=«

(mod 1. In the case of , there are two possibilities: (a) If

If we assume thaka—n—%|=constk| ™ for somev=1 (a  7(r)=P/qeQ, thenRy(x)=x+p for eachxeR, so ev-
condition of this type is called a Diophantine condition—seeery point inS* is q periodic forr 4 . If p andq are relatively
definition of Sec. IlID, and thath™! hasr derivatives prime, g is the minimal period. (b) If 7(r,)&Q, thenr,
(which implies that its Fourier coefficients, satisfy || ~ has no periodic points; every point B has a dtlense orbit.
<consf ™). Then if r>uv+2, the coefficients; define a  T"US, tqe“' and o-limit sets of any poinixe S are the
smooth function (for more details see, e.g[[16], Sec. whole St, which is usually described as saying ti®itis a
XIll.47). Of course, once we knowch~?, then, sinceh* minimal set forr ,. [Recall thata(x) is the set of the points
depends only o and is therefore determined, we can ob-at Which the orbit ofx accumulates in the past, ame(x)
tain a. those points where it accumulates in the futpre.

In summary, there are magsthat do not come from any
a at all, come from infinitely manwy’s, or come from one

and only onea. The mapsF can always be obtained from B. Types of orbits of OPHSs of the circle

one and only one. To classify the possible orbits of OPHs of the circle, we
need the following definitior(for the particular caséd:St
Ill. MAPS OF THE CIRCLE —>Sl)-

_ ) Definition 2.(a) On orbitO of f is calledhomoclinicto an
In this section, we recall some facts from the theory of thgnyariant set Te SWO i a(X)=w(x)=T for any

dynamics of the orientation preserving homeomorphisms . . (b) An orbit © of f is said to beheteroclinicto two
(OPHs and orientation preserving diffeomorphist®PDS igjint invariant setd; andT, if © is disjoint from each of
of 'Fhe_ circleSt, f_oIIowmg [[17], Chaps_. 11 and 12[18,16.  {hem anda(x)=T;, w(x)=T, for anyxe O.
This is a very rich theory and we will only recall the facts it this definition, the possible types of orbits of circle
that we will need in the physical application. OPHs were classified by Poincdt9] as follows(for a mod-
We shall |de_nt|fy81_W|t_h the quotientR/Z and use the ¢ pedagogical treatment see, e[fL7], Sec. 11.2: (i)
universal covering projection For 7(f)=p/qeQ, all orbits of f are of the following
types: (a) a periodic orbit with the same period as the ro-
mR—S'=R/Z:x—m(x):=x(mod 1). tationr,,q and ordered in the same way as an orbit 9f,,
(b) an orbit homaclinic to the periodic orbit if there is only
Another way of thinking abou8' is identifying it with the  one periodic orbit, anéc) an orbit heteroclinic to two differ-
unit circle in C using the universal covering projection ent periodic orbits if there are two or more periodic or-
Xr—>e? X bits. (ii) When 7(f ) ¢ Q, the possible types of orbits are
Letf:S'—S! be an OPH an#:R—R beits lifttoR, i.e.,  (a) an orbit dense 8! that is ordered in the same way as an
a map satisfyingfer=moF. The fact thaff is an OPH im-  orbit of r 1, (as are the two following casggb) an orbit
plies that F(x+1)=F(x)+1 for each xeR, which is dense in a Cantor set, afa) an orbit homoclinic to a Cantor
equivalent to saying th& —Id is 1 periodic. The liftF of f  set.
is unique up to an additive integer constant. If a point We also note that in casegh) and ii(c), the Cantor set
e Stis g periodic, i.e.f9(x) =x, thenf9(x) =x+p for some  that has a dense orbit is unique and can be obtained as the set
peN. of accumulation points of any orbit.
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C. Poincareand Denjoy theorems One can understand Diophantine numbers as “very irra-
tional” numbers. If one wants to approximate them well by

ask whether a particular OPH & is equivalent in some rationalp/q, one needs to pay by taking the denominator be

sense to a rotation. To state the results, we give a preci%?r:ger;dtmcsenr:ifproveea th?thgigt’)égejeetn?:;:l,lu?(laoggil?(;se
definition of “equivalence” and the important concept of typek,v 9

topological transitivity. e ggfiﬁtig?isreg. function f is said to beC™ ° wherem
Definition 3.Let f:M—M andg:N—N be C™ mapsm  _ ;i o, inte.ger ande (0,1), if it is C™ ! and its

=0. (&) The mapsf and g are topologically conjugateif  _ 1)t gerivative is (+ 5)—H"c'>|d'er continuous, i.e.,

there exists a homeomorphisth:M —N such that f

=h"Yegoh. (b) The mapg is atopological factorof f or f

is semiconjugatdo g if there exists a surjective continuous

map_h.l\/!—>N such thathef =geh; the maph IS called a The first theorem answering the question about the
semiconjugacy (c) A map T(:MHM is topologically tran- o\ othness of the conjugacy was the theorem of Arnold
sitive p.rowded the orbit{f“(X)}x.z, of some pointx is [21]. He proved that if the analytic mapiS!— St is suffi-
dense inM. . _ ciently close(in the sup-norm to a rotation andr(f) is
The meaning of the conjugacy is tr;ibecomes under a  pjigphantine of typey =1, thenf is analytically conjugate to

change of variables, so that from the point of coordinatghe rotationr ,, i.e., there exists an analytic function
independent physical quantitisand g are equivalent. The p:st, g such thathef=r y°h. The iterative technique
meaning of the semiconjugacy is that, embedded in the dyapplied by Arnold was fruitfully used later in the proof of the

Because of the simplicity of the rotations it is natural to

ID™ 1 (x)— D™ Y (y)|<constx—y|* .

namics off, we can find the dynamics @f celebrated Kolmogorov-Arnold-Mose(KAM) theorem—
The following theorem of Poincafd 9] was the first theo-  see, e.g.[22]. Arnold’s result was extended to the case of
rem classifying circle maps. finite differentiability by Mosef23]. In such a case, the Dio-

Theorem 1.(Poincareclassification theoremLet f:St phantine exponent has to be related to the number of de-
—S! be an OPH with irrational rotation number. Ther(a) rivatives one assumes for the map.
if fis topologically transitive, thefi is topologically conju- Arnold’s theorem is local, i.e., it is important thétis
gate to the rotatiorr sy and (b) if f is not topologically cI_ose toa r_otat|on. Arn(_)Id conjectured that any analytlc_: map
transitive, then there exists a noninvertible continuous monoWith a rotation number in a set of full measure is analytically
tone maph:S!— St such thathef =r . \oh; in other words, Conhjugate to a rotation. Herma6] proved that there exists

: S AR ’ £ ok
f is semiconjugate to the rotatiar, a setAC[0,1] of full Lebesgue measure such thatfi& C
i H ek—2—¢

If we restrict ourselves to considering not OPHs, butfor 3=ksw andr(f) € A, then the conjugacy i€ for

OPDs of the circle, we can say more about the conjugac§ly &= 0. After several improvements, notably Yocd@z],

problem. An important result in this direction is the theorem he.best resglt on smooth co,njugacy we know of, Is the fol-
of Denjoy [20]. lowing version of Herman's theorem as extended by

. 1 1o Katznelson and Ornstei25].
{onal rotation number and deivative of bounded variadon s, TeCreM 3iHerman, Katznelson, and Omstessume
. o . . thatf is aC¥ circle OPD whose rotation number is Diophan-
topologically trar\5|t|ve and hencéaccordmg o PO'”.C"’“E‘ tine of orderv, andk>v +1. Then the homeomorphisiy
theoreng topologlclally fqnjugate tp a rotatlc_Jn. In particular, which conjugatesf with the rotationr sy, is of class
everyC“ OPDf:S — S is topologically conjugate to ;.

) (OpO ckv~¢ for any e>0.
We note that this condition is sharp. For every 0 there There are examples dE2~¢ maps with a Diophantine

- - S , DIeS ! .
areC*"* maps(see the definition latgwith irrational rota-  rotation number arbitrarily close to a rotation and not conju-
tion number, semiconjugate but not conjugate to a rotatiogyated by an absolutely continuous function to a rotation—
(see[[16], Sec. X.3.19). see, e.9.[26].

D. Smoothness of the conjugacy E. Devil's staircase, frequency locking, and Arnold’s tongues

So far we have discussed only conditions for existence of | ot {f,}.ca be a one-parameter family of circle OPHs
a conjugacyh to a rotation, requirindh to be only a homeo-  gych thatf,(x) is increasing ine for every x. Then the
morphism. Can anything more be said about the differentiafynction a— #(f,) is nondecreasing(Since the maps are
bility properties ofh in the case of smooth or analytic maps only defined modulo an integer and so is the rotation num-
of the circle? As we will see later, this is a physically impor- ber, what is meant precisely is that if one takes the numbers
tant question since physical quantities such as energy densilyith their integer parts, they can be made increasing or non-
depend on the smoothness of the conjugacy. To answer thifecreasing; this is done in detail ifL7], Sec. 11.1)
question precisely, we need two definitions. For such a family the following fact holds: if(f,) ¢ Q,

Definition 4. A numberp is called Diophantineof type  thena— 7(f,) is strictly increasing locally ad; on the other
(K,v) (or simply of typev) for K>0 andv=1, if [p  hand, if f, has rational rotation number and the periodic
—p/q|>K]qg| "1V for all (p/g) € Q. The numbep is called  point is attracting or repellingi.e., there is a neighborhood
Diophantineif it is Diophantine for somé&>0 andv=1. A  of the point that gets mapped into itself by forwards or back-
number, which is not Diophantine, is called.@muville num-  wards iteratiohy, then a— 7(f,) is locally constant at this
ber. particular value ofa, i.e., for all ¢’ sufficiently close toa,
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7(f,)=7(f,). The local constancy of the function Since 74 is strictly increasing for irrational values of
a—>7(f,) is known as frequencyphase, modelocking.  74(a), the setl,:={(a,B)|75(a)=v} for an irrationalv
Note that, since the rotation number is continuous, when it=[0,1] is a graph of a continuous function. For a rational
indeed changes, it has to go through rational numbers. Thie, has a nonempty interior and is bounded by two continuous
described phenomenon suggests the following definition. curves. The wedges between these two curves are often re-
Definition 6. A monotone continuous functiow:[0,1] ferred to as Arnold’s tongues.
—R is called adevil's staircaseif there exists a family The fact that7(¢, o) = 7(r,) = a implies that for 3=0,
{l¢gt¢c= of disjoint open subintervals df0,1] with dense the set ofa’s for which there is frequency locking coincides
union such thaty takes constant values on these subintervalswith the rational numbers between 0 and 1, so its Lebesgue
(We call attention to the fact that the complement of themeasure is zero. Whei>0, its Lebesgue measure is posi-
intervals in which the function is constant can be of positivetive. The width of the Arnold’s tongues for sma8l for the

measure. Arnold’s map(3.2) is investigated, e.g., if28]. Much of this
The devil's staircase is said to lbempletef the union of  analysis carries out for more general functions such as the
all intervalsl ; has a full Lebesgue measure. ones we encounter in the problem of the periodically pulsat-

A very common way of phase locking for differentiable ing resonator.
mappings arises when the map we consider has a periodic The total Lebesgue measure of the frequency-locking in-
point and that the derivative of the return map at the periodigervals, m({7, Y(v)|lveQN[0,1]}), becomes equal to 1
point is not equal to 1. By the implicit function theorem, when the family of circle maps consists of maps with a hori-
such a periodic orbit persists, and the existence of a periodigontal point(so that the map, even if having a continuous
orbit implies that the rotation number is locally constant. Atinverse, fails to have a differentiable 9resee[29,3( for
the end of the phase-locking interval the map has derivativeumerical results anfB1] for analytical proof. With the Ar-
one and experiences a saddle-ng@egent bifurcation. nold’s map 7, 5 this happens whe=1/27. In our case

We note that, unless certain combinations of derivativeshis happens when the mirror goes at one instant at the speed
vanish(see, e.g.[27]), the saddle-node bifurcation happens of light.
in a universal way. That is, there are analytic changes of We note also that the numerical papg38,29,30,33con-
variables sending one into another. This leads to quantitativeasin not only conjectures about the measure of the phase-
predictions. For example, the Lyapunov exponents of a peritocking intervals but, perhaps more importantly, conjectures
odic orbit should behave as a square root of the distance efbout scaling relations that hold “universally.” In particular,
the parameter to the edge of the phase-locking interval.  the dimension of the set of parameters not covered by the

Of course, other things can happen in special cases: thshase-locking intervals should be the same for all nondegen-
fixed point may be attractive but only neutrally so; there mayerate families. These universality conjectures are supported
be an interval of fixed points, the family may be such thatnot only by numerical evidence but also by a renormalization
there are no frequency locking intervaks.g., the rotation group picture—see, e.g[34] and the references therein.
Nevertheless, all these conditions are exceptional and can bthese universality predictions have been verified in several
excluded in concrete examples by explicit calculatidf®r  physical contexts. Notably in turbulence by Glazier and
example, if the family of maps is analytic but not a root of Libchaber[35].
the identity, it is impossible to have an interval of periodic ~ As we will see in Sec. IVD, we do not expect that the
points) families obtained in Eq(2.14 for mirrors oscillating with

In the example we will consider, we will not perform a different amplitudes belong to the same universality class as
complete proof that a devil's staircase occurs, but rather weypical mappings, but they should have universality proper-
will present numerical evidence. In particular, the squareties that are easy to figure out from those of the above ref-
root behavior of the Lyapunov exponent with the distance taerences.
the edge of the phase-locking interval seems to be verified.

Let us now consider two-parameter families of OPDs of
the circle{ ¢, g}, depending smoothly oar and 8. Assume F. Distribution of orbits
that whenB=0, the maps of the family are rotations by
i.e., ¢,0=r,. We will call g8 the nonlinearity parameter.
Assume also thai¢, g/da>0. An example of this type is
the family studied by Arnold21],

For the physical problem at hand it is also important to
know how the iterates of the circle map—g(x)
:=G(x)(mod1) are distributed. As we shall see in the
lemma in Sec. IV, if the iterates af are well distributedin
an appropriate sengahe energy of the field in the resonator
Na,p:S'— Shix—=> 1, 5(X) =X+ a+ Bsin 2rx(mod 1), does not build up. The distribution of an orbit is conveniently

(3.2  formalized by using the concept of invariant measures. We
recall that a measurg on X is invariant under the measur-

wherea e[0,1), Be(0,1/2m). _ _ able mapf:X— X if w(f~1(A))=pu(A) for each measurable
The rotation number is a continuous map in the uniform getA
topology, and¢, 4 is a continuous function of and 3, so Given a pointx e St, the frequency of visit of the orbit of

the function @,B)—>7(¢, )= 75(e) depends continu- ytg|cCS! can be defined by
ously ona and 8. The mapr, is nondecreasing; fo8>0,

7 Is locally constant at each for which 74(«a) is rational, #{ij0<i=n and fi(x)el}
and strictly increasing ifrg(a) is irrational. Thus,7g is a (1) = lim - . (33
devil’s staircase. oo n
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It is easy to check that if for every intervhlthe limit (3.3 The continuity properties of the measures of the circle are

exists, it defines an invariant measure describing the frenot so easy to ascertain. Nevertheless, there are certain re-

quency of visit of the orbit ok. Therefore, if there are orbits sylts that are easy to establish.

that have asymptotic frequencies of visit, we can find invari- |y the case where we have a rational rotation number and

ant measures. _ _isolated periodic orbits, some of them attracting and some of
A trivial example of the existence of such measures ishem repelling, the only possible invariant measures are mea-

whenx is periodic. In such a case, the measw;pis_ asUMm gyres concentrated in the periodic orbits.
of Dirac delta functions concentrated on the periodic orbit. .. the irrational rotation number case, the Kronecker-

The measure of an interval is proportional to the number O(Neyl theorem implies that all the maps with an irrational

points in the orbit it contains. We also note that it is easy to . . S :
. P rotation number—since they are semiconjugate to a rotation
construct systemssee, e.g.[36]) for which the limits like Y Jug

the one in Eq(3.3) do not exist except for measures concen-by Poincareheorem—are uniquely ergodic. In the situations

trated on the fixed points, so that even the existence of schheretherm"?‘” s_theo_rem happllef],fthls rr(;ea];'slljri will have a
equidistributed orbits is not obvious. smooth density since it is the push forward of Lebesgue mea-

There are also relations going in the oppositeSUré Py a smooth diffeomorphism.
direction—if invariant measures exist, they imply the exis- We also recall that by the Banach-Alaoglu theorem and

tence of well-distributed orbits. We recall that the Krylov- the Riesz representation theorem, the set of Borel probability

Bogolyubov theoreni[17], Theorem 4.1 ]asserts that any Measures is compact when we give it the topologyugf

continuous map on a compact metrizable space has an invari= # < un(A) — u(A) for all Borel measurable sefs (This

ant probability measure. Moreover, the Birkhoff ergodic convergence is called weakonvergence by functional ana-

theorem[[17], Theorem 4.1.Rimplies that given any invari- lysts and convergence in probability by probabilists.

ant measure, the set of points for whicl, as in Eq.(3.3 Lemma.lf N\ is a parameter value for which, admits

does not exist has measure zero. only one invariant measurg,, given e invariant mea-
Certain measures have the property that=u for  gyres forf, , with \;—\, theny; converges in the weak

u-almost all points. These measures are called ergodic. From :

the physical point of view, a measure is ergodic if all the SENSE€ Qe - . .

points in the measure are distributed according to it. For NOt€ that we are not assuming thigt are uniquely er-

maps of the circle, there are several criteria that allow us t@odic. In particular, the lemma says that in the set of

conclude that a map is ergodic. uniguely ergodic maps, the map that a parameter associates
For rotations of the circle with an irrational rotation num- the invariant measure is continuous if we give the measures

ber we recall the classical Kronecker-Weyl equidistributionthe topology of weak convergence.

theorem[[17], Theorem 4.2.1, which shows that any irratio- Proof. Let M, be a convergent subsequence. The limit

nal rotation is uniquely ergodic, i.e., has °'f"y one |nvar_|antsh0u|d be an invariant measure figr. Hence, it should be

measure—the Lebesgue measorg(Such uniquely ergodic

maps are ergodic because, by Birkhoff ergodic theorem, thté‘?(.‘ Itis aln easy point set tc:polotgy IebTma that f(_)fr lellncUEns
limiting distribution has to exist almost everywhere, but, aking values in a compact metrizablé space, 1 all subse-

since there is only one invariant measure, all these invariarfiluences converge to the same point, then this point is a limit.

distributions have to agree with the original measuféws, | he space of measures with wéatopology is metrizable
the iterates of any e St under an irrational rotation are uni- because by Riesz representation theorem is the dual of the

formly distributed on the circle. space of continuous functions with sup-norm, which is me-
For general nonlinear circle OPDs the situation may berizable. _
quite different. As an example, consider Arnold’s map 5 We also point out that as a corollary of KAM thedig1]

(3.2. If it is conjugate to an irrational rotation biy, i_é_, we can obtain that for nondegenerate families, if we consider
%‘B:hflorma »°N, then there is a unique invariant prob- the parameter values for which the rotation number is Dio-
ability measureu defined for each measurable sktby phantipg with uniform_ constants, the measures are differen—
w(A):=m(h(A)). This implies that ifl is an interval inSt,  tiable jointly onx and in the paramete(For the differentia-
then the frequency with which a poimtvisits | is equal to ~ bility in the parameter, we need to use Whitney
w(l). differentiability or, equivalently, declare that there is a fam-
On the other hand, if( 7, z)=p/qe Q, then all orbits ily of densities differentiable both ik and in\ that agrees
are periodic or asymptotic to periodic. Thus, the only pos-with the densities for these values X
sible invariant measure is concentrated at the periodic points On the other hand, we point out that there are situations
and therefore singular, if the periodic points are isolated. Letvhere the invariant measure is not unigigeg., a rational
us now assume thatis very close torg Y(p/q), but does not  rotation or a map with more than one periodic orbiih such
belong to it. Theny, z has no periodic orbits, but still there cases, it is not difficult to approximate them by maps in such
exists a pointx which is “almost periodic,” i.e., the orbits a way that the invariant measure is discontinuous in the
linger for an extremely long time near the points weak topology as a function of the parameter. The discon-
x,naﬁ(x),...,ng’_ﬁl(x). So that, even if the invariant mea- tinuity of the measures with respect to parameters, as we
sure is absolutely continuous, one expects that it is nevertheshall see, has the physical interpretation that, by changing the
less quite peaked around the periodic orbit—see Fig. 5. Thescillation parameters by arbitrarily small amounts, we can
behavior of such maps is described quantitatively by the “in-go from unbounded growth in the energy to the energy re-
termittency theory”[37]. maining bounded.
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IV. APPLICATION TO THE RESONATOR PROBLEM

Now we return to the problem of a one-dimensional opti-
cal resonator with a periodically moving wall to discuss the
physical implications of circle maps theory, and illustrate

with numerical results in an example.

A. Circle maps in the resonator problem

If we takea(t) to depend on two parametersand 3, as

in Eqg. (2.2), then, as we saw in Sec. Il C, the time between
the consecutive reflections at the mirrors can be described i /

terms of the functiong, ; andG, ; defined by Eq(2.14).

These maps are lifts of circle maps that we will denote by /

f,pandg, z. The restriction on the range @fin Eq. (2.2)

implies thatf, ; andg, z are analytic circle OPDs. There-
fore, we can apply the results about the types of orbits of 3 ‘ s s
OPHs ofSt, Poincareand Denjoy theorems, as well as the
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smooth conjugacy results and the facts about the distribution

of orbits.

In an application where the motion of the mirrfire.,
a(t)] is given, one needs to compuke, ; andG,, ; (2.14,
which cannot be expressed explicitly froa(t), but they

FIG. 3. A part of the graph 0f(9,.1/2,) VS .

We note that for parameters for which the map is in non-
degenerate frequency locking, i.e(g,,z) =p/q and the at-

require only to solve one variable implicit equation. In the tractive periodic point of period has a negative Lyapunov

numerical computations we used the subroufiBroIN [38]
to solve implicit equations. Ify=F, 5(t) andz=G, 4(t),
then fora(t) given by Eq.(2.2), y andz are given implicitly
by
—ytt+at+28siNw(y+t)]=0,
—z+t+a+ B[sin(27t) +sin(27z)]=0.

Givent, we can findy, zapplying ZEROIN.

B. Rotation number, phase locking

exponent,{G’C‘y‘?ﬁ(x)}ﬁ:0 will converge exponentially to the
fixed point for allx in a certain interval, according to the
results about the types of orbits of circle ma@ec. Il B).

The whole circle can be divided into such intervals and a
finite number of periodic points. Therefore, the graph of
Gos, and hence of,%;, will look—up to errors exponen-
tially small in n—like a piecewise-constant function with
values(up to integerkin the fixed points oggﬁ—see Fig. 4.
The fact that certain functions tend to piecewise-constant
functions for large values of the argumemthich follows
from what we found abouG%; for largen) was observed
numerically for particular motions of the mirror [16,4]. In
physical terms, this means that the rays will be getting closer

In this section, our goal is to translate the mathematicahnd closer together, so over time the wave packets will be-
statements from the theory of circle maps into physical precome narrower and narrower and more and more sharply

dictions for the resonator problem.

The theory of circle maps guarantees that the measure o* 1

the frequency-locking intervals fa,, g is small wheng is

small and becomes 1 whe®= 1/27. The theory also guar-
antees for analytic maps that, unless a power of the map i
the identity, the frequency-locking intervals are nontrivial.
For the example that we have at hand, it is very easy to
verify that this does not happen and, therefore, we can pre
dict that there will be frequency-locking intervals and that as ,,
the amplitude of the oscillations of the moving mirror in-
creases so that the maximum speed of the moving mirrol
reaches the speed of light, the devil’s staircase becomes con
plete. Figure 3 shows a part of the complete devil's

staircase—the situation which happens when the ngaps
andf, ; lose their invertibility, i.e., for3=1/27.

We also recall that the theory of circle maps makes pre-
dictions about what happens for nondegenerate phase :
locking intervals. Namely, for parameters inside the phase- 0 05 1

& 05

locking interval, the map has a periodic fixed point and the

Lyapunov exponent is smaller than 0, while at the edges of FIG. 4. Development of the piecewise-constant structure of
the phase-locking interval the map experiences a nondegegg’,,s o, (the rotation number 0fYg 254501 iS 1/6). Graphs of
erate saddle-node bifurcation—provided that certain combigg’,s ,,are plotted fom=1 (dotted ling, n=5 (dashed ling n

nations of the derivatives do not vanif2i/].

=10 (long dashed ling andn=100 (solid line).
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' in Sec. IV B, the field develops wave packets that become
30 | . narrower with time, so Eqg92.22 and (2.23 hold for the
asymptotic behavior of the energy. Note that Ej22 ex-
presses the Doppler-shift factor in terms of the derivatives of
the mapG. This gives a very close relation between the
dynamics and the behavior of the wave packets.
Proposition 1.Let @ and 8 be such thatr(g, g) =p/q,
dpidm and that the mai5:=G, ; has a stable periodic orb®,
={6,,...,64} such that G’ (6,)<1. Assume that the ini-
tial electromagnetic field in the cavity is not zero at some
space-time point for which the phase of the first reflection
from the moving mirror is in the basin of attraction ©f; .
Then the energy of the field in the resonator will be as-
ymptotically increasing at an exponential rate:

20

x E(t)~exp — =t 4.
FIG. 5. Density of the invariant measures f6=0.1 and«
=0.253 (dashed ling «=0.2539 (solid line), and «=0.253975 Remark 1Dr. N. Gonzalez has kindly informed us that in
(dotted ling. his thesid40] he has proved that ifG%)’(6,) =1 (and some

additional conditions are satisfiedthe energy increases

peaked. The number of wave packets is equal fohe num-  polynomially.

ber of reflections from the moving mirror per unit time will ~ Proof.First, notice that the number of reflections from the
tend to the inverse of the rotation number. In the next sectiofinoving mirror per unit time reaches a well-defined litaine

we discuss how this yields an increase of the field energyand the same for rays-the inverse of the rotation number.
which happens exponentially fast on time. Secondly, as was discussed in Sec. Il, at reflection from the

The fact that forr(g, g) € Q the rays approach periodic moving mirror at phasé, a wave packet becomes narrower
orbits, is also interesting from a quantum-mechanical poinby a factor ofD(6) [Eq. (2.11], which leads to aD(6)
of view due to the relation between the periodic orbits in atimes increase in its energy. Asymptotically, the phases at
classical system and the energy levels of the correspondin@gflection will approach the stable periodic orbé®,
quantum system, given by the Gutzwiller's trace formula=1{61,....04} of g,5. The Doppler factors at reflection will
(see, e.g.[39]). tend correspondingly tgD(6,),....D(6y)} [Eq. (2.1D].

We also note that we expect that slightly away from theHence, in timep each ray will undergq reflections from the
edges of a phase-locking interval, the invariant density willmoving mirror, the total Doppler shift factor along the peri-
be sharply peaked around the points in which it was concenedic orbit ®, being
trated in the phase-locking intervals. This is described by the
“intermittency theory” [37]. q 1-a'(6)

To observe numerically in our example what happens DOy =[] D(o)=]1 (6 .
whena enters or leaves a frequency-locking interval, we set Y Y e 1+al(ey)
Ng(v)={ae[0,1)7(g,,4)=v}. Figure 5 represents the
probability density of visit of the iteratedu/dm. The figure On the other hand, the definition of the m&pas the
showsdu/dm for « close to the left end dfly ;,(1/6). When advance in the time between successive reflections from the
a approaches(from the lefy the left end ofNg,(1/6),  moving mirror yieldsg;=G'~*(¢,). The chain rule applied
du/dm becomes sharply peaked at some points, and when to the explicit expressio(2.14) for G yields
enters the frequency-locking interval, the invariant measure

becomes singularg, ¢ ; undergoes tangent bifurcation at q-1 q-1 1+a'(6)
=0.253977...). All seems to be consistent with the conjec- G Y op=1] c'(6)=]] —————,
ture that all the frequency-locking intervals in the family j=1 s 1-al(654)

(away of =0) are nondegenerate, i.e., that at the bound- . _ _
aries of the phase-locking intervals the map satisfies the hywhich gives the following expression fdd(0,) [cf. Eq.
pothesis of the saddle-node bifurcation theorem. (2.22]:

C. Doppler shift 1-a’(6,)

D(0g= m[(Gq*l)'(ﬁl)]fl

One of the most interesting parts of the applications of
circle map theory is the ease with which we can describe the
effect on the energy after repeated reflections. :1—a’(01) (G (4,) 4.2

Recall that in Sec. Il D, we found the time dependence of 1+a’(6y) 4’ '
the field energy under the assumption that at tinadl rays
are going to the right. This assumption is not very restrictiveHence, the energy density grows by a factorDJqq)z.
in the case of a rational rotation number since, as we foun&ince afterg reflections the wave packet is concentrated in a
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3 - - the “local Doppler factors”(2.22 will be bounded, which
implies the boundedness of the enefgy23.

There is an interesting connection between the invariant
densities of the system and the growth of the electromagnetic
energy density.

2 | . Recall that if a densityu is invariant, w(G(6))
D©y Bat/in =u(60)/G'(6). Hence, if the densityw never vanishes,
G'(0)=u(6)/ u(G(6)) and, therefore, @')'(6)
=u(0)/ n(G'(0)). Let us assume that there is only one char-
acteristic passing through the space-time p@ipg, and this

1.0152

log,, D(©,) for ae Np(1/6)

L 1.0000 _ characteristic is going to the right. Then, using the notations
0 a0, 6x107 of Sec. Il C, we can write the energy density(gk) as[cf.
B=0.15 Eqg. (2.22],
B=0.14
p=0.12 o -
par ﬁ | o [1maen,) w@ (0,
¢ : : T = T o).
024 R 0.34 (%) 1+a’(6p)  wm(6-,) (toX)
4.3

FIG. 6. Alog-linear graph of the total Doppler factor f@y, 5 in

the phase-locking interval of rotation number 1/6 for differgnt In the general cadavith two characteristics througlx,t)],
The insertlinear-linear graph oD(®¢) vs a— «a] calls attention  5ne can use Eq$2.18 and (2.21) to prove the following
to the square-root behavior at edges;is the value ofx at the left gt

end ofNo.14{1/6). Lemma.lf a system has an invariant densjiy which is

i bounded away from zero, then the electromagnetic energy
length D(©,) times smaller, the total energy grows by a yensity ofC! initial A, A, is smaller tharC u?2 for all times.

factor of D(®) in p units of time, which implies Eq(4.1). In the cases that Herman’s theorem applies, there is an
The quantities G")'(6) that appear in Eq(4.2 have jyyarjant density bounded away from zer@nd also
been studied intensively in dynamical systems theory Si”CBounde()L Hence, we conclude that there are values of the
they control the growth of infinitesimal perturbations of tra- amplitude of mirror's oscillations for which the energy den-
jectories. Similarly, they are factors that multiply the invari- sity of the field remains bounded. This set is typically a

ant densities when they get transported, as we will see in Eqzanior set interspersed with values for which the energy in-
(4.3. ) creases exponentially.

We found numerically the total Doppler factoB(0 ) Some other results about the behavior of the energy with
for some pe}rtlcular ch0|ce§ of the parameters. In Fig. 6respect to time and parameters are obtainel@j#0,41.
log1oD(®5) is shown for different values o and for « We call attention to the fact th§R1] contains examples
€Ny(1/6). Obviously, the maximum value @(®¢) de-  of analytic maps whose rotation numbers are very closely
pends strongly ons, becoming infinite for8=1/2m and  approximated by rationals and that are arbitrarily close to a
somea e Ny);(1/6). For smaller values o8, the Doppler  (qtation such that they preserve no invariant density and,

factor is much smaller. Moreover, the width of the therefore, are not smoothly conjugate to a rotation.
frequency-locking intervals for smafl is small, so the prob- It is also known that for all rotation numbers one can

ability of hitting a frequency-locking interval with arbitrarily  constructC2-* maps arbitrarily close to rotations with this
chosena and 8 is small.[The likelihood of frequency lock-  rqtation number and such that they do not preserve any in-
ing for the Amold’s map(3.2) is studied numerically in yariant measuref26]. It is a testament to the ubiquity of

[30].] these maps that these questions were motivated and found

_ In the case when Herman’s theorem applies the derivagppjications in the theory of classification 6f algebras.
tives of G" are bounded independently of which causes

the energy of the system to be bounded for all times, which ) ) ] )

is proved in the following proposition. D. The behavior for small amplitude and universality
Proposition 2.If G, 4 is such that it satisfies the hypoth-  We note that, even if all the motions of the mirror lead to

esis of Herman’s theorem, then the energy density remaing circle map as in Eq2.15), it does not seem clear to us that

bounded for all times. all the maps of the circle can appearRasG for a certaina.
Proof. In such a casésaﬁ:h‘loRoh with h differen-  This makes it impossible to conclude that the theory of ge-

tiable and R a rotation by 7(g, ). Therefore, GZ,B neric circle maps applies directly to obtain conclusions for a

=h"1RM"h and generic motion of the mirror. Therefore, the very developed

mathematical theory of generic or universal circle maps can-

N VoY — (h—1) (RN ny/ / not be applied without caution to maps that appear as the
(Gap)"(0)=(")"(RN(EN(RY ((6)"(6) result of generic or universal oscillations of the mirror. Of

=(h™ 1)’ (R™h(6))h’'(6), course, all the conclusions of the general theory that apply to

all maps of the circle apply to our case. Those conclusions
becauseR")' = 1. The two factors on the right-hand side of that require nondegeneracy assumptions will need verifica-
the above equation are bounded uniformlygiandn. Thus, tion of the assumptions.
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One aspect that we have found makes a big differencéfts of rotations plusO(e?). This implies, in particular, that
with the generic theory is the situation where the mirror ostheir rotation number ist(Fz,)=7(Gz,)=2a+0(&?).
cillates with small amplitude, i.ea,(t)=a+eb(t) withba  One could wonder if it would be possible to continue the
periodic function of zero average and period 1, andl.  process and eliminate also to ordet.

The first parametea is the average length of the resonator, If we look at thee? terms in Eq.(4.5, we see that
while e =0 is called the “nonlinearity parameter” for obvi- 4’ (t) 5(t)=0, and, wheny is chosen as in Eq4.6),

ous reasons. If we denote by, andG5 . the corresponding

two-parameter families of maps of the circle constructed ac-

cording to Eq.(2.14), then we have, for three times differen- 7' (t+2a)[ n(t) +Hy(t)]= 7' (t+2a) n(t+ 2a),
tiable families,

which also has average zero. Therefore, a necessary condi-

F;s(t):t+2§+28b(t+5)+Zszb’(t+§)b(t+5) tion for the 2 term in h 'eH,ch (t) to be zero is

+0(&3), H(t) 7(t) + H,(t)=0.
For theF3, in Eq. (4.4) we see thaF, has zero average.
R — , Nevertheless, the terfd;(t) (t) does not, in general, have
=t+2a+ +b(t+ +e2b’(t+ L .
Ca.()=t+2ate[b(t) +b(t+22)]+&7b' (t+22) average zero as can be seen in examples. Hence, we see that
X[b(t)+b(t+2a)]+0(&%). (4.4  the rotation number indeed changes by an order which is

O(&?) and not higher in general. This property is not generic
Note that the term of orderalways has a vanishing average. for families of circle maps starting with a rotatiomand it
As we will immediately show, this property causes that someouts them outside of the universality classes considered in
well-known generic properties of families of circle mappings[32,34], etc., since the correspondence between rotation
do not hold for families of maps constructed as in Ej14.  numbers and parameters is not the same.
Indeed, if we consider the expressions for small amplitude According to the geometric picture of renormalization de-

developed in Eq(4.4), we can write the maps as veloped in[34], the space of circle maps is divided into
slices of rational rotation numbers, which are—in appropri-
H,(t)=t+2a+ eH,(t)+e2H,(t) + O(&3). ate sense—parallel. In that language—in which we think of

families of circle maps as curves in the space of mappings—
Since the conclusions of the theory of circle maps are indethe families of advance mags; . and Gg . (for fixed a)
pendent of the coordinate system chosen, it is natural to trpave second-order tangency to the foliation of rational rota-
to choose a coordinate system where these expressions areli@§ numbers rather than being transversal. Hence, the scal-
simple as possible. Hence, we chodsgt):=t+en(t), a g predicted by universality theory should be true $8rin
perturbation of the identity, and conside;lngohg, which  Place ofe. We have not verified this prediction, but we ex-
is just H, in another system of coordinates, related to theP€Ct 0 come back to it soon.
original one byh, . Then, up to terms of order®, we have

E. Schwarzian derivative in the problem of moving mirrors

h; oH oh, (1) =t+2a+ e[ n(t) — p(t+2a) + Hy(1)] Fulling and Davieg9] calculated the energy-momentum
2F oy tensor in the two-dimensional quantum field theory of a
Te{n' (tr2a)p(t+2a) - 7'(t+23) massless scalar field influenced by the motion of a perfectly

X[ () +H(t)]+H(t) (1) +H,(t)}. reflecting mirror (see also[42]). They obtained that the

“renormalized” vacuum expectation value of the energy
(4.5 density radiated by a moving mirror into initially empty

We would like to choosey in such a way that the term is space Is

not present. Note that sindep(t+2a)dt= [ »(t)dt, this is
impossible unlesgH,(t)dt=0. When [H,(t)dt=0, H; is TO(u) = i{ 3
smooth and 2 is Diophantine, a well-known resulsee, 247 | F'(u) 2
e.g.,[[16], Sec. XIlIl.4]) shows that in such a case we can

obtain onez satisfying

FW(U) 3(F//(u))2
F'(u)

whereu=t—x, andF is related to the law of the motion of
the mirror,x=a(t), by Eq.(2.14). The right-hand side of
n(t)— n(t+2a)+H(1)=0 (4.6)  this equation is nothing butup to a constant factprthe
_ _ ) ) ) Schwarzian derivative ofF—a differential operator that
and7=0.[Suchzis conventionally obtained by using Fou- natyrally appears in complex analysis, e.g., it is invariant
rier coefficients. Note that in Fourier coefficients, B4.6)  ynder a fractional linear transformation; vanishing Schwar-
amounts to#,(e?"*?2—1)=(F}),. If H; is smooth, the zian derivative of a function is the necessary and sufficient
Fourier coefficients decrease fast and & & Diophantine, condition that the function is fractional linear transformation,
then @27*22— 1)1 does not grow too fast. For more details etc. More interestingly, the Schwarzian derivative has been
we refer to the reference aboye. used as an important tool in the proof of several important
Since for the function§,, andGg, the term of ordee  theorems in the theory of circle maps—see, d24,43. In
has a zero average, we can transform these functions inthe light of the connection between the solutions of the wave
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equation in a periodically pulsating domain and the theory of There are several advantages of the approach presented
circle maps it is not impossible that this is not just a coinci-here. First, it allows us to understand better the time evolu-
dence. tion of the electromagnetic field in the resonator and the
mechanism of the change in the field energy. Second, the
predictions are based on the general theory of circle maps so
V. CONCLUSION they are valid for any periodic motion of the mirror; let us
also emphasize that our method is nonperturbative. Last, but

Using the method of characteristics for solving the wave

equation, we reformulated the problem of studying the elec©t [€ast, for a given motion of the mirror, one can easily

tromagnetic field in a resonator with a periodically oscillat- ke certain predictions about the behavior of the field by

ing wall into the language of circle maps. Then we usedS|mpIy calculating the rotation number of the corresponding

some results of the theory of circle maps in order to maké;ircle map, and without solving any partial differential equa-

predictions about the long-time behavior of the field. We'lons:
found that many results in the theory of circle maps have a
directly observable physical meaning. Notably, for a typical
family of mirror motions we expect that the electromagnetic  This research was partially supported by Grants from the
energy grows exponentially fast in a dense set of intervals iNSF. We are thankful to Professor C. K. Law for making
the parameters. Nevertheless, it remains bounded for ajome comments and providing references. We also thank Dr.
times for a Cantor set of parameters that has positive meaN. Gonzalez for a kind and informative letter that we had
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