
PHYSICAL REVIEW E JUNE 1999VOLUME 59, NUMBER 6
Theory of circle maps and the problem of one-dimensional optical resonator
with a periodically moving wall
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Nikola P. Petrov†
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We consider the electromagnetic field in a cavity with a periodically oscillating perfectly reflecting boundary
and show that the mathematical theory of circle maps leads to several physical predictions. Notably, well-
known results in the theory of circle maps~which we review briefly! imply that there are intervals of param-
eters where the waves in the cavity get concentrated in wave packets whose energy grows exponentially. Even
if these intervals are dense for typical motions of the reflecting boundary, in the complement there is a positive
measure set of parameters where the energy remains bounded.@S1063-651X~99!08106-4#

PACS number~s!: 05.45.2a, 42.60.Da, 02.30.Jr, 42.15.2i
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I. INTRODUCTION

In this paper, we consider the behavior of the electrom
netic field in a resonator, one of whose walls is at rest and
other moving periodically. The main point we want to ma
is that several results in the mathematical literature of cir
maps immediately yield physically important conclusions

The problem at hand is mathematically similar~the equa-
tion is the same but the boundary conditions differ! to the
study of the motion of vibrating strings with a periodical
moving boundary@1,2#, or the classical electromagnetic fie
in a periodically pulsating cavity@3,4#. It is connected with
the vacuum quantum effects in such region@5,6#. The prob-
lem is also of practical importance, e.g., for the formation
short laser pulses@7#.

The goal of this paper is to show that the problem o
classical wave with a periodically moving boundary can
easily reformulated in terms of the study of long-term beh
ior of circle maps and, therefore, that many well-known
sults in this theory lead to physical predictions. In particul
we give proofs of several results obtained numerically
Cole and Schieve@4# and others. Extensions of this ap
proach, which will be discussed elsewhere, allow us to re
conclusions for some quasiperiodic motions of small am
tude or possibly for nonhomogeneous media.

In the case of more than one spatial dimension, the an
gous problem@8# is much more complicated, so the predi
tions are not as clear as in the one-dimensional case an
will not discuss them further.

We emphasize that the mathematical theory presente
completely rigorous and, hence, the physical predicti
made are general for the assumptions stated.

There are other intriguing relations for which we have
conceptual explanation. We observe that a calculation
Fulling and Davies@9# leads to the conclusion that the e
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ergy density radiated by a moving mirror is equal to t
Schwarzian derivative of the motion of the mirror~for details
see Sec. IV E!. This Schwarzian derivative is a differentia
operator frequently used in the theory of one-dimensio
dynamical systems and particularly in the theory of circ
maps.

The plan of the exposition is the following. In Sec. II w
show how the physical problem can be formulated in ter
of circle maps. Section III contains a brief exposition of t
necessary facts from the theory of circle maps; in Sec.
these facts are applied to the problem at hand and illustr
numerically, and in the conclusion we discuss the advanta
of our approach.

II. PHYSICAL SETTING

A. Description of the system

We consider a one-dimensional optical resonator cons
ing of two parallel perfectly reflecting mirrors. For simplicit
of notation, we will consider only the situation in which on
of them is at rest at the origin of thex axis while the other
one is moving periodically with periodT. The case where the
two mirrors are moving periodically with a common perio
can be treated in a similar manner. We assume that the r
nator is empty, so that the speed of the electromagn
waves in it is equal to the speed of lightc. The speed of the
moving mirror cannot exceedc.

We note that the experimental situation does not nec
sarily require that there is a physically moving mirror. O
experimental possibility—among others—would be to ha
a material that is a good conductor or not depending
whether a magnetic field of sufficient intensity is applied
it, and then have a magnetic field applied to it in a chang
region. This induces reflecting boundaries that are mov
with time. Note that the boundaries of this region cou
move even faster thanc; hence the study of mirrors movin
at a speed comparable toc is not unphysical~even if in that
case one would also have to discuss corrections to
boundary conditions depending on the details of the exp
mental realizations!.
6637 ©1999 The American Physical Society



no
v

e
le,

e

ve

-

ec

th
o

e
e

on

n-
,
e

to

ir-
a-

ch
-

as-
he

s

y

nd-

to
lly

e

n-
nge

ion

n
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We shall use dimensionless timet and lengthl connected
with the physical~i.e., dimensional! time tphys and length
l phys by tªtphys/T, lª l phys/(cT).

Let the coordinate of the moving mirror bex5a(t),
wherea is a Ck function (k51,...,̀ ,v) satisfying the con-
ditions

a~ t !.0, ua8~ t !u,1, a~ t11!5a~ t !. ~2.1!

The meaning of the first condition is that the cavity does
collapse, the second one means that the speed of the mo
mirror cannot exceed the speed of light, and the third on
that the mirror’s motion is periodic of period 1. An examp
which we will use for numerical illustrations, is

a~ t !5
a

2
1b sin 2pt S ubu,

1

2p
, 0,ubu,

a

2 D .

~2.2!

Since there are no charges and no currents, we impos
gauge conditionsA050, ¹•A50 on the 4-potentialAm
5(A0 ,A), and obtain thatA satisfies the homogeneous wa
equation. We consider plane waves traveling inx direction,
so that without loss of generality, we assume thatA(t,x)
5A(t,x)ey , and obtain thatA(t,x) must satisfy the homo
geneous (111)-dimensional wave equation,

Att~ t,x!2Axx~ t,x!50, ~2.3!

in the domainSª$(t,x)PR2ut0,t,0,x,a(t)%. It will also
need to satisfy some boundary conditions that will be sp
fied in Sec. II B, and appropriate initial conditions,

A~ t0 ,x!5c1~x!, At~ t0 ,x!5c2~x!. ~2.4!

Before discussing the boundary conditions and
method of solving the boundary-value problem in the d
main S, let us discuss the way of solving Eq.~2.3! in the
absence of spatial boundaries, i.e., in the domain$t0,t, x
PR%. It is well known that in this case, the solution of th
problem Eqs.~2.3! and ~2.4! at some particular space-tim
point ~t,x! can be written as

A~ t,x!5C2~x0
2!1C1~x0

1!, ~2.5!

where x0
6
ªx6(t2t0), and C2 and C1 are functions of

one variable that are selected to match the initial conditi
~2.4!. The explicit expressions forC6 follow from the
d’Alembert’s formula~see, e.g.,@10#!,

C6~s!5
1

2 Fc1~s!6E
z

s

c2~s8!ds8G , ~2.6!

wherez is an arbitrary constant~the same forC1 andC2).
The representation~2.5! has a simple geometrical mea

ing: the value ofA(t,x) is a superposition of two functions
C2(x0

2) andC1(x0
1), the former being constant along th

lines $x2t5const%, and the latter being constant along$x
1t5const%. The disturbances at a space-time point~T,X!
propagate in the space-time diagram along the lines$x2t
t
ing
is

the

i-

e
-

s

5X2T% and $x1t5X1T% emanating from this point~in
more physical terms, this corresponds to two rays moving
the right and to the left at unit speed!; these lines are called
characteristics, and the method of solving Eqs.~2.3! and
~2.4! by using the representation~2.5! is called the method of
characteristics~see, e.g.,@10,11#!.

B. Method of characteristics, boundary condition
at the moving mirror, and Doppler shift at reflection

To obtain the boundary conditions at the stationary m
ror, we note that the electric field, i.e., the temporal deriv
tive of the vector potential, must vanish at this mirror, whi
yields the following ‘‘perfect reflection’’ boundary condi
tion:

At~ t,0!50. ~2.7!

The boundary condition at the moving mirror can be e
ily obtained by performing a Lorenz transformation from t
laboratory frameK to the inertial frameK̃ comoving with the
moving mirror at some particular momentt. The temporal
and spatial coordinates inK, t, andx, are related to the one
in K̃, t̃ , and x̃, by

t2t05 t̃ coshz1 x̃ sinhz,
~2.8!

x2a~ t0!5 t̃ sinhz1 t̃ coshz,

where tanhz5a8(t). In the comoving frame, the boundar
condition is Ãt̃(0,0)50, which, together with Eq.~2.8!,
yields

A12a8~ t !2Ãt̃~0,0!5At„t,a~ t !…1a8~ t !Ax„t,a~ t !…50,
~2.9!

which means that the derivative tangent to the spatial bou
aries of the domainS vanishes.

The method of characteristics developed in Eqs.~2.5! and
~2.6! for situations with no boundaries can be adapted
provide rather explicit solutions for systems in spatia
bounded space-time domains satisfying Eq.~2.9! at the
boundaries~see, e.g.,@12, Chap. I#!.

The prescription is the following. The solution of th
boundary-value problem~2.3!, ~2.4!, ~2.7!, and ~2.9! in the
domainS is a superposition of two functions that are co
stant on the straight pieces of the characteristics and cha
their sign at each reflection. To findA(t,x), one has to con-
sider the two characteristicsg2 and g1 passing through
~t,x!, and propagate them backwards in time~according to
the rule that, upon reaching a mirror, they change direct
of propagation! until they reach the line$time5t0% at the
points (t0 ,x0

2) and (t0 ,x0
1), respectively,—see Fig. 1. The

A(t,x) is given by

A~ t,x!5~21!N2C2~x0
2!1~21!N1C1~x0

1!, ~2.10!
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whereN7 are the number of reflections ofg7 on the way
back from~t,x! to (t0 ,x0

7). In Sec. II C we will give explicit
formulas forx0

7 andA(t,x) in terms of circle maps.
Indeed, because the solution~2.10! is the sum of two

functions constant along the straight pieces of the charac
istics, the wave equation is satisfied in the interior. Also,
initial conditions are easily verified because fort2t0 small,
x0

2 andx0
1 are close tox @see Eq.~2.17!#.

To check that this prescription also satisfies the bound
conditions, we need another argument. Consider the sp
time diagram of the reflection of the field between two
finitesimally close characteristics reflected by the mov
mirror at time u, shown in Fig. 2. The world line of the
mirror is denoted bym, the angled between it, and the time
direction is connected with the mirror’s velocity at reflectio
by tand5a8(u). The Doppler factor at reflectionD(u) is de-
fined as the ratio of the spatial distancesD andD8 between
the characteristics before and after reflection:

FIG. 1. FindingA(t,x) by the method of characteristics.

FIG. 2. Reflection by the moving mirror.
r-
e

ry
e-

g

D~u!ª
D

D8
5tanS p

4
2d D5

12tand

11tand
5

12a8~u!

11a8~u!
.

~2.11!

Thus, the absolute values of the temporal and spatial der
tives of the field increase by a factor ofD(u) after reflection.
This implies that if in the space-time domain between
two characteristics, the values of the corresponding der
tives of the field before reflection are denoted byAt andAx ,
then after reflection they will become2D(u)At and
D(u)Ax , respectively. Hence, in the space-time domain
the overlap the derivatives of the field will be

At„u,a~u!…5At2D~u!At ,
~2.12!

Ax„u,a~u!…5Ax1D~u!Ax .

Now, we will show that the modified method of character
tics is consistent with the boundary condition~2.9!. We note
thatAt52Ax , which simply means that before reflection th
rays are moving to the right at unit speed. If we multiply t
second equation of Eq.~2.12! by a8(u)5@12D(u)#/@1
1D(u)# @which follows from Eq.~2.11!# and add it to the
first, we obtain exactly the boundary condition~2.9!.

The same prescription gives a solution of the Dirich
problemA(t,0)5A„t,a(t)…50. Similar methods can be de
veloped for other boundary conditions. Unfortunately for t
widely considered Neumann boundary conditions the rep
sentation by reflected characteristics is not straightforw
whena8(t)Þ0.

We note that the method of characteristics also yields
formation in the important case when the medium is inh
mogeneous and perhaps time dependent. This is a physi
natural problem since in many applications we have cavi
filled with optically active media whose characteristics a
changed by external perturbations. In this case, the me
of characteristics does not yield an exact solution as ab
but rather, it is the main ingredient of an iterative procedu
@11#. Physically, what happens is that in inhomogeneous m
dia, the waves change shape while propagating in cont
with the propagation without change in shape in homo
neous media~2.5!. We plan to come to this problem in a ne
future.

C. Using circle maps to solve the boundary-value problem
„2.3…, „2.4…, „2.7…, and „2.9… in the domain S

We now reformulate the method of characteristics into
problem of circle maps.

We consider a particular characteristic and denote by$tn%
the times at which it reaches the stationary mirror and$un%
the times at which it reaches the oscillating one; let ...,tn
,un,tn11,un11,... Note that, with this notation,

tn5un2a~un!5~ Id2a!~un!,
~2.13!

tn115un1a~un!5~ Id1a!~un!,

where Id is the identity transformation. Therefore,
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tn115~ Id1a!+~ Id2a!21~tn!5:F~tn!,
~2.14!

un115~ Id2a!21+~ Id1a!~un!5:G~un!.

We refer toF andG as the time advance maps. They allo
us to compute the time of reflection on one side in terms
the time of the previous reflection on the same side. T
conditions~2.1! on the range ofa anda8 guarantee that (Id
2a) is invertible and thatF and G are Ck ~by the implicit
function theorem!.

When the functiona is 1 periodic,F andG satisfy

F~ t11!5F~ t !11, G~ t11!5G~ t !11. ~2.15!

These relations mean thatF(t) andG(t) depend only on the
fractional part oft. In physical terms, we characterize a r
flection of a ray by the phase of the oscillating mirror wh
the impact takes place, i.e., by the time of reflection mod
1; if we know the phase at one reflection, we can comp
the phase at the next impact. Mathematically, this means
F andG can be regarded as lifts of maps fromS1[R/Z to S1

~see Sec. III!.
We want to argue that the study of the dynamics of

circle maps~2.14! leads to important conclusions for th
physical problem, which we will take up after we colle
some information about the mathematical theory of cir
maps. In particular, many results in the mathematical lite
ture are directly relevant for physical applications. This
natural because the long-term behavior of the solution ca
obtained by repeated application of the time advance m
@see Eq.~2.18!#.

We call attention to the fact that

G5~ Id1a!21+F+~ Id1a!5~ Id2a!21+F+~ Id2a!,
~2.16!

so that

Gn5~ Id1a!21+Fn+~ Id1a!5~ Id2a!21+Fn+~ Id2a!.

In dynamical systems theory this is usually described as
ing that the mapsF andG are ‘‘conjugate’’~see Sec. III C!.
In our situation, this comes from the fact thatF and G are
physically equivalent descriptions of the relative phase
different successive reflections:F advances thet variables
while G advances theu’s, and theu’s are related to thet’s by
Eq. ~2.13!.

Now, we use circle maps to derive an explicit formula f
the solution of the boundary-value problem~2.3!, ~2.4!,
~2.7!, and~2.9! in the domainS. Let us trace back in time the
characteristicsg2 and g1 coming ‘‘from the past’’ to the
space-time point~t,x!—see Fig. 1. Letu0

6
ª(a7Id)21(t

2x) be the last moments the characteristicsg6 are reflected
by the moving mirror, and letu2k

6
ªG2k(u0

6). After N1 ,
respectivelyN2, reflections on the way backwards in tim
~out of whichn1 respectivelyn2, are from the moving mir-
ror!, the characteristicg1, respectivelyg2, crosses the line
$time5t0%. The spatial coordinate of the intersection ofg6

and$time5t0% can be easily seen to be
f
e

o
te
at

e

e
-

be
ps

y-

f

x0
65h~u2n6

6 ,t0!ªu~ Id2a!~u2n6

6 !2t0u. ~2.17!

Thus, the formula for the vector potential is

A~ t,x!5~21!N2C2+h@G2n2+~a1Id!21~ t2x!,t0#

1~21!N1C1+h@G2n1+~a2Id!21~ t2x!,t0#.

~2.18!

If c1PC2, c2PC1, and aPC2, then Eqs.~2.17! and
~2.18! provide us with a classical solution~i.e., the second
partial derivatives exist in the classical sense! and it satisfies
Eqs.~2.3!, ~2.4!, ~2.7!, and~2.9!.

Even if c1 , c2 , and a are less regular, Eqs.~2.17! and
~2.18! can be shown to be a solution of Eq.~2.3! in the sense
of distributions. Provided thatc1 andc2 are continuous, Eq
~2.4! will be satisfied. Provided thataPC1, the argument
presented above shows that Eqs.~2.7! and~2.9! are satisfied.

Remark. The argument we used to derive Eq.~2.6! also
shows that, whenaPC1, c1PC1, andc2PC0 in Eq. ~2.6!,
this is the only weak solution in the space of distribution
To that effect note that, in the coordinatesj5x1t, h5x
2t, Eq. ~2.3! reads

]j]hA50. ~2.19!

The only distribution weak solutions of this equation are

A~j,h!5F1~j!1F2~h!, ~2.20!

with F1 andF2 distributions.
The argument leading to Eq.~2.18! shows that the only

distribution of the form~2.20!, which satisfy the initial and
the boundary conditions, is precisely Eq.~2.18!. Of course,
whenaPC2, c1PC2, andc2PC1, the solution is the only
classical solution. Even if the above argument is quite sa
factory in the case of constant coefficients, when the spee
light depends on the position or on the time, the uniquen
theory is more complicated since the equation does not
duce to the simple form~2.19! and one has to use energ
methods, etc.@@12#, Sec. II 7#.

D. Energy of the field

The method of characteristics gives a very illuminati
picture of the mechanism of the change of the field ener

E~ t !5E
0

a~ t !
T00~ t,x!5

1

8p E
0

a~ t !

@At~ t,x!21Ax~ t,x!2#dx,

~2.21!

due to the distortion of the wave at reflection from the mo
ing mirror. Indeed, consider the change of the energy o
very narrow wave packet at reflection from the moving m
ror at timeu. Since at reflection the temporal and the spa
distances decrease by a factor ofD(u), uAtu and uAxu will
increase by a factor ofD(u). Therefore, the integrand of th
energy integral will increaseD(u)2 times, while the support
of the integrand~i.e., the spatial width of the wave packet
time t! will shrink by a factor ofD(u). Hence, the energy o
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the wave packet after reflection will beD(u) times greater
than its energy before reflection.

In the general case, one can use Eq.~2.18! and obtain the
energy of the system at timet. For the sake of simplicity, we
will give the formula only under the assumption that at tim
t all the rays are going to the right, i.e., assuming that
vector potential is of the formA(t,x)5(21)N2C2(x0

2).
Let us introduce the ‘‘local Doppler factor,’’

D~ t0 ,x0
2 ;t !ªU ]

]t
h~un2

2 ,t0!U5 12a8~u2n2

2 !

11a8~u0
2!

~G2n2!8~u0
2!.

~2.22!

It has the physical meaning of the ratio of the frequencies
the incident wave and the wave at timet @cf. Eq. ~2.11!#.
Note thatD(t0 ,x0

2 ;t) is equal to the derivative ofG2n2

multiplied by a factor, which is bounded and bounded aw
from 0 independently ofn2 @due to the fact thatua8(t)u,1#.
From Eqs.~2.18! and ~2.17! we obtain that the square o
D(t0 ,x0

2 ;t) is the ratio of the energy densityT00(t,x) and
the initial energy densityT00(t0 ,x0

2):

T00~ t,x!52u~C2!8~x0
2!u2D~ t0 ,x0

2 ;t !2

5T00~T0 ,x0
2!D~ t0 ,x0

2 ;t !2.

On the other hand,D(t0 ,x0
2 ;t) is connected with the Jaco

bian of the change of coordinatesx0
2°x by

U ]x

]x0
2U5U]x0

2

]x
U21

5D~ t0 ,x0
2 ;t !21.

Hence, the energy of the system at timet is

E~ t !5E
0

a~ t !
T00~ t0 ,x0

2!D~ t0 ,x0
2 ;t !dx0

2 . ~2.23!

Note that since the local Doppler factor squared is
ratio of the energy densities at two consecutive reflect
points, then it satisfies the following multiplicative propert
Let (t1 ,x1

2),(t2 ,x2
2),...,(tk ,xk

2) be space-time points on th
characteristic connecting (t0 ,x0

2) and~t,x!, such that at all of
them the rays are going to the right, and lett0,t1,...,tk
,t. Then

D~ t0 ,x0
2 ;t !5D~ t0 ,x0

2 ;t1!D~ t1 ,x1
2 ;t2!...D~ tk21 ,xk21

2 ;tk!

3D~ tk ,xk
2 ;t !.

As can be seen from Eq.~2.22!, this multiplicative property
is closely related to the chain rule for diffeomorphisms,

~Gn!8~u!5G8„Gn21~u!…G8„Gn22~u!…...G8~u!.
~2.24!

The mathematical theory of dynamical systems conta
many results about derivatives of highly iterated maps
above~2.24!. In Sec. IV C we will be able to translate som
of them into asymptotic properties of the field energy.
e

f

y

e
n

s
s

A simple and intuitively clear formula for the rate o
change of the field energy can be obtained by using E
~2.21!, ~2.3!, ~2.7!, and~2.9!, and integrating by parts:

E8~ t !52a8~ t !
1

8p FAx„t,a~ t !…1a8~ t !At„t,a~ t !…

A12a8~ t !2 G 2

52a8~ t !
1

8p
Ãx̃~0,0!252a8~ t !T̃11~0,0!

52a8~ t ! p̃rad~ t̃ 50!52a8~ t !prad~ t !,

where p̃rad( t̃ 50)5T̃11(0,0) is the radiation pressure inK̃,
and we have used the fact that the pressure is relativ
invariant @@13#, Sec. 45#. This fact and Eq.~2.12! yield

prad~ t !52
12a8~ t !

11a8~ t !

Ax
2

4p
.

It is worth noting that the expression for the radiation pre
sure has been derived from the postulates of special relat
by Einstein in his famous first paper on the subject@14# ~see
also @15#, @13#, Sec. 32!.

E. The inverse problem: Determining the mirror’s motion
given the circle map

It is important to know whether the notion of a ‘‘typical’
G is the same as the notion of a ‘‘typical’’a or a ‘‘typical’’
F ~in the mathematical literature people speak about ‘‘g
neric’’ maps, and in physical literature about ‘‘universa
maps!. We do not know the answer to this question, and h
we will give some arguments showing that the answer is
obvious. In this paper we will not use ‘‘generic’’ or ‘‘uni-
versal’’. Rather we will make explicit the nondegenera
assumptions so that they can be checked in the concrete
amples. In Sec. IV D we will show that some universal pro
erties for families of circle maps do not apply toG con-
structed according to Eq.~2.14! with a(t)5ā1«b(t).

While the functiona can be expressed in terms ofF as

a5 1
2 (F2Id)+@ 1

2 (F1Id)#21, the relation betweenG anda is
much harder to invert. We should have

a~u!1a„G~u!…5G̃~u!, ~2.25!

whereG̃(u)ªG(u)2u, so for anyn,

a~u!5G̃~u!2G̃„G~u!…1...1~21!nG̃„Gn~u!…

1~21!n11a„Gn11~u!….

Hence, if G2k(u0)5u0(mod 1), a necessary condition fo
the existence ofa is that

(
i 50

2k21

~21! i G̃„Gi~u0!…50. ~2.26!

An example of aG where the above condition is not satisfie
can be readily constructed. We furthermore note that i
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map fails to satisfy Eq.~2.26! and if (G2k)8(u0)Þ1, then all
small C1 perturbations will also fail to satisfy Eq.~2.26!.
Thus, there areC1 neighborhoods of maps that cannot
realized asG for a moving mirror.

On the other hand, given very simpleG’s, it is easy to
construct infinitely manya’s that satisfy Eq.~2.25! and that,
therefore, lead to the sameG. For example, forG(u)5u
1 1

2 , Eq. ~2.25! amounts toa(u1 1
2 )1a(u)5 1

2 . If we pre-
scribea for u in @0, 1

2#, then this equation determinesa on
@ 1

2, 1# ~the only care needs to be exercised so that the
determinations ofa match atu5 1

2 ). A similar construction
works whenG permutes several intervals.

In the case whenG is conjugate to an irrational rotation
G5h21+Ra+h, then Eq.~2.25! is equivalent to

a+h21+Ra1a+h215h21+Ra2h21.

Then a+h21 can be determined using Fourier analysis, s
ting h21(u)5u1(k52`

` t̂ke
2p iku, a+h21(u)5u

1(k52`
` ĉke

2p iku, which leads to

~e2p ika11!ĉk5~e2p ika21!t̂k . ~2.27!

If we assume thatuka2n2 1
2 u>constuku2v for somev>1 ~a

condition of this type is called a Diophantine condition—s
definition of Sec. III D!, and that h21 has r derivatives
~which implies that its Fourier coefficientst̂k satisfy u t̂ku
<constuku2r). Then if r .v12, the coefficientsĉk define a
smooth function ~for more details see, e.g.,@@16#, Sec.
XIII.4 #!. Of course, once we knowa+h21, then, sinceh21

depends only onG and is therefore determined, we can o
tain a.

In summary, there are mapsG that do not come from any
a at all, come from infinitely manya’s, or come from one
and only onea. The mapsF can always be obtained from
one and only onea.

III. MAPS OF THE CIRCLE

In this section, we recall some facts from the theory of
dynamics of the orientation preserving homeomorphis
~OPHs! and orientation preserving diffeomorphisms~OPDs!
of the circleS1, following @@17#, Chaps. 11 and 12#, @18,16#.
This is a very rich theory and we will only recall the fac
that we will need in the physical application.

We shall identifyS1 with the quotientR/Z and use the
universal covering projection

p:R→S1[R/Z:x°p~x!ªx~mod 1!.

Another way of thinking aboutS1 is identifying it with the
unit circle in C using the universal covering projectio
x°e2p ix.

Let f :S1→S1 be an OPH andF:R→R be its lift toR, i.e.,
a map satisfyingf +p5p+F. The fact thatf is an OPH im-
plies that F(x11)5F(x)11 for each xPR, which is
equivalent to saying thatF2Id is 1 periodic. The liftF of f
is unique up to an additive integer constant. If a pointx
PS1 is q periodic, i.e.,f q(x)5x, thenf q(x)5x1p for some
pPN.
o

t-

-

e
s

A. Rotation number

A very important number to associate to a map of t
circle is its rotation number, introduced by Poincare´. It is a
measure of the average amount of rotation of a point al
an orbit.

Definition 1. Let f :S1→S1 be an orientation preservin
homeomorphism andF:R→R a lift of f. Define

t0~F !ª lim
n→`

Fn~x!2x

n
, t~ f !ªt0~F !~mod 1! ~3.1

and callt( f ) a rotation numberof f.
It was proved by Poincare´ that the limit in Eq.~3.1! exists

and is independent ofx. Hence,t( f ) is well defined.
The rotation number is a very important tool in classif

ing the possible types of behavior of the iterates of the OP
of S1. The simplest example of an OPH ofS1 is the rotation
by a on S1[R/Z, r a :x°x1a ~mod 1! ~corresponding to a
rotation by 2pa radians onS1 thought of as the unit circle in
C!. The mapRa :x°x1a is a lift of r a , and t(r a)5a
~mod 1!. In the case ofr a there are two possibilities: ~a! If
t(r a)5p/qPQ, thenRp/q

q (x)5x1p for eachxPR, so ev-
ery point inS1 is q periodic forr p/q . If p andq are relatively
prime, q is the minimal period. ~b! If t(r a)¹Q, then r a
has no periodic points; every point inS1 has a dense orbit
Thus, thea- and v-limit sets of any pointxPS1 are the
whole S1, which is usually described as saying thatS1 is a
minimal set forr a . @Recall thata(x) is the set of the points
at which the orbit ofx accumulates in the past, andv(x)
those points where it accumulates in the future.#

B. Types of orbits of OPHs of the circle

To classify the possible orbits of OPHs of the circle, w
need the following definition~for the particular casef :S1

→S1).
Definition 2.~a! On orbitO of f is calledhomoclinicto an

invariant set TPS1\O if a(x)5v(x)5T for any
xPO. ~b! An orbit O of f is said to beheteroclinicto two
disjoint invariant setsT1 andT2 if O is disjoint from each of
them anda(x)5T1 , v(x)5T2 for any xPO.

With this definition, the possible types of orbits of circ
OPHs were classified by Poincare´ @19# as follows~for a mod-
ern pedagogical treatment see, e.g.,@@17#, Sec. 11.2#!: ~i!
For t( f )5p/qPQ, all orbits of f are of the following
types: ~a! a periodic orbit with the same period as the r
tation r p/q and ordered in the same way as an orbit ofr p/q ,
~b! an orbit homoclinic to the periodic orbit if there is onl
one periodic orbit, and~c! an orbit heteroclinic to two differ-
ent periodic orbits if there are two or more periodic o
bits. ~ii ! When t( f )¹Q, the possible types of orbits ar
~a! an orbit dense inS1 that is ordered in the same way as
orbit of r t( f ) ~as are the two following cases!, ~b! an orbit
dense in a Cantor set, and~c! an orbit homoclinic to a Canto
set.

We also note that in cases ii~b! and ii~c!, the Cantor set
that has a dense orbit is unique and can be obtained as th
of accumulation points of any orbit.
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C. Poincaréand Denjoy theorems

Because of the simplicity of the rotations it is natural
ask whether a particular OPH ofS1 is equivalent in some
sense to a rotation. To state the results, we give a pre
definition of ‘‘equivalence’’ and the important concept
topological transitivity.

Definition 3.Let f :M→M andg:N→N be Cm maps,m
>0. ~a! The mapsf and g are topologically conjugateif
there exists a homeomorphismh:M→N such that f
5h21+g+h. ~b! The mapg is a topological factorof f or f
is semiconjugateto g if there exists a surjective continuou
map h:M→N such thath+ f 5g+h; the maph is called a
semiconjugacy. ~c! A map f :M→M is topologically tran-
sitive provided the orbit,$ f k(x)%kPZ , of some pointx is
dense inM.

The meaning of the conjugacy is thatg becomesf under a
change of variables, so that from the point of coordin
independent physical quantities,f andg are equivalent. The
meaning of the semiconjugacy is that, embedded in the
namics off, we can find the dynamics ofg.

The following theorem of Poincare´ @19# was the first theo-
rem classifying circle maps.

Theorem 1.~Poincare´ classification theorem! Let f :S1

→S1 be an OPH with irrational rotation number. Then:~a!
if f is topologically transitive, thenf is topologically conju-
gate to the rotationr t( f ) and ~b! if f is not topologically
transitive, then there exists a noninvertible continuous mo
tone maph:S1→S1 such thath+ f 5r t( f )+h; in other words,
f is semiconjugate to the rotationr t( f ) .

If we restrict ourselves to considering not OPHs, b
OPDs of the circle, we can say more about the conjug
problem. An important result in this direction is the theore
of Denjoy @20#.

Theorem 2.~Denjoy theorem! A C1 OPD ofS1 with irra-
tional rotation number and derivative of bounded variation
topologically transitive and hence~according to Poincare´
theorem! topologically conjugate to a rotation. In particula
everyC2 OPD f :S1→S1 is topologically conjugate tor t( f ) .

We note that this condition is sharp. For every«.0 there
areC22« maps~see the definition later! with irrational rota-
tion number, semiconjugate but not conjugate to a rota
~see@@16#, Sec. X.3.19#!.

D. Smoothness of the conjugacy

So far we have discussed only conditions for existence
a conjugacyh to a rotation, requiringh to be only a homeo-
morphism. Can anything more be said about the differen
bility properties ofh in the case of smooth or analytic map
of the circle? As we will see later, this is a physically impo
tant question since physical quantities such as energy de
depend on the smoothness of the conjugacy. To answer
question precisely, we need two definitions.

Definition 4. A numberr is calledDiophantineof type
(K,v) ~or simply of type v) for K.0 and v>1, if ur
2p/qu.Kuqu212v for all (p/q)PQ. The numberr is called
Diophantineif it is Diophantine for someK.0 andv>1. A
number, which is not Diophantine, is called aLiouville num-
ber.
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One can understand Diophantine numbers as ‘‘very ir
tional’’ numbers. If one wants to approximate them well b
rationalp/q, one needs to pay by taking the denominator
large. It can be proved that forK→0, the set of all Diophan-
tine numbers of type (K,v) has Lebesgue measure as clo
to full as desired.

Definition 5. A function f is said to beCm2d where m
>1 is an integer anddP(0,1), if it is Cm21 and its (m
21)st derivative is (12d)-Hölder continuous, i.e.,

uDm21f ~x!2Dm21f ~y!u,constux2yu12d.

The first theorem answering the question about
smoothness of the conjugacy was the theorem of Arn
@21#. He proved that if the analytic mapf :S1→S1 is suffi-
ciently close~in the sup-norm! to a rotation andt( f ) is
Diophantine of typev>1, thenf is analytically conjugate to
the rotation r t( f ) , i.e., there exists an analytic functio
h:S1→S1 such thath+ f 5r t( f )+h. The iterative technique
applied by Arnold was fruitfully used later in the proof of th
celebrated Kolmogorov-Arnold-Moser~KAM ! theorem—
see, e.g.,@22#. Arnold’s result was extended to the case
finite differentiability by Moser@23#. In such a case, the Dio
phantine exponentv has to be related to the number of d
rivatives one assumes for the map.

Arnold’s theorem is local, i.e., it is important thatf is
close to a rotation. Arnold conjectured that any analytic m
with a rotation number in a set of full measure is analytica
conjugate to a rotation. Herman@16# proved that there exists
a setA,@0,1# of full Lebesgue measure such that iff PCk

for 3<k<v andt( f )PA, then the conjugacy isCk222« for
any«.0. After several improvements, notably Yoccoz@24#,
the best result on smooth conjugacy we know of, is the f
lowing version of Herman’s theorem as extended
Katznelson and Ornstein@25#.

Theorem 3.~Herman, Katznelson, and Ornstein! Assume
that f is aCk circle OPD whose rotation number is Diopha
tine of orderv, andk.v11. Then the homeomorphismh,
which conjugatesf with the rotation r t( f ) , is of class
Ck2v2« for any «.0.

There are examples ofC22« maps with a Diophantine
rotation number arbitrarily close to a rotation and not con
gated by an absolutely continuous function to a rotation
see, e.g.,@26#.

E. Devil’s staircase, frequency locking, and Arnold’s tongues

Let $ f a%aPA be a one-parameter family of circle OPH
such that f a(x) is increasing ina for every x. Then the
function a°t( f a) is nondecreasing.~Since the maps are
only defined modulo an integer and so is the rotation nu
ber, what is meant precisely is that if one takes the numb
with their integer parts, they can be made increasing or n
decreasing; this is done in detail in@@17#, Sec. 11.1#.!

For such a family the following fact holds: ift( f a)¹Q,
thena°t( f a) is strictly increasing locally ata; on the other
hand, if f a has rational rotation number and the period
point is attracting or repelling~i.e., there is a neighborhoo
of the point that gets mapped into itself by forwards or ba
wards iteration!, then a°t( f a) is locally constant at this
particular value ofa, i.e., for all a8 sufficiently close toa,
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t( f a8)5t( f a). The local constancy of the functio
a°t( f a) is known as frequency~phase, mode! locking.
Note that, since the rotation number is continuous, whe
indeed changes, it has to go through rational numbers.
described phenomenon suggests the following definition

Definition 6. A monotone continuous functionc:@0,1#
→R is called adevil’s staircaseif there exists a family
$I j%jPJ of disjoint open subintervals of@0,1# with dense
union such thatc takes constant values on these subinterv
~We call attention to the fact that the complement of t
intervals in which the function is constant can be of posit
measure.!

The devil’s staircase is said to becompleteif the union of
all intervalsI j has a full Lebesgue measure.

A very common way of phase locking for differentiab
mappings arises when the map we consider has a per
point and that the derivative of the return map at the perio
point is not equal to 1. By the implicit function theorem
such a periodic orbit persists, and the existence of a peri
orbit implies that the rotation number is locally constant.
the end of the phase-locking interval the map has deriva
one and experiences a saddle-node~tangent! bifurcation.

We note that, unless certain combinations of derivati
vanish~see, e.g.,@27#!, the saddle-node bifurcation happe
in a universal way. That is, there are analytic changes
variables sending one into another. This leads to quantita
predictions. For example, the Lyapunov exponents of a p
odic orbit should behave as a square root of the distanc
the parameter to the edge of the phase-locking interval.

Of course, other things can happen in special cases:
fixed point may be attractive but only neutrally so; there m
be an interval of fixed points, the family may be such th
there are no frequency locking intervals~e.g., the rotation!.
Nevertheless, all these conditions are exceptional and ca
excluded in concrete examples by explicit calculations.~For
example, if the family of maps is analytic but not a root
the identity, it is impossible to have an interval of period
points.!

In the example we will consider, we will not perform
complete proof that a devil’s staircase occurs, but rather
will present numerical evidence. In particular, the squa
root behavior of the Lyapunov exponent with the distance
the edge of the phase-locking interval seems to be verifi

Let us now consider two-parameter families of OPDs
the circle,$fa,b%, depending smoothly ona andb. Assume
that whenb50, the maps of the family are rotations bya,
i.e., fa,05r a . We will call b the nonlinearity parameter
Assume also that]fa,b /]a.0. An example of this type is
the family studied by Arnold@21#,

ha,b :S1→S1:x°ha,b~x!ªx1a1b sin 2px~mod 1!,
~3.2!

whereaP@0,1), bP(0,1/2p).
The rotation numbert is a continuous map in the uniform

topology, andfa,b is a continuous function ofa andb, so
the function (a,b)°t(fa,b)5:tb(a) depends continu-
ously ona andb. The maptb is nondecreasing; forb.0,
tb is locally constant at eacha for which tb(a) is rational,
and strictly increasing iftb(a) is irrational. Thus,tb is a
devil’s staircase.
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Since tb is strictly increasing for irrational values o
tb(a), the set I vª$(a,b)utb(a)5v% for an irrational v
P@0,1# is a graph of a continuous function. For a rationalv,
I v has a nonempty interior and is bounded by two continu
curves. The wedges between these two curves are ofte
ferred to as Arnold’s tongues.

The fact thatt(fa,0)5t(r a)5a implies that forb50,
the set ofa’s for which there is frequency locking coincide
with the rational numbers between 0 and 1, so its Lebes
measure is zero. Whenb.0, its Lebesgue measure is pos
tive. The width of the Arnold’s tongues for smallb for the
Arnold’s map~3.2! is investigated, e.g., in@28#. Much of this
analysis carries out for more general functions such as
ones we encounter in the problem of the periodically puls
ing resonator.

The total Lebesgue measure of the frequency-locking
tervals, m($tb

21(v)uvPQù@0,1#%), becomes equal to 1
when the family of circle maps consists of maps with a ho
zontal point~so that the map, even if having a continuo
inverse, fails to have a differentiable one!—see@29,30# for
numerical results and@31# for analytical proof. With the Ar-
nold’s mapha,b this happens whenb51/2p. In our case
this happens when the mirror goes at one instant at the s
of light.

We note also that the numerical papers@32,29,30,33# con-
tain not only conjectures about the measure of the pha
locking intervals but, perhaps more importantly, conjectu
about scaling relations that hold ‘‘universally.’’ In particula
the dimension of the set of parameters not covered by
phase-locking intervals should be the same for all nondeg
erate families. These universality conjectures are suppo
not only by numerical evidence but also by a renormalizat
group picture—see, e.g.,@34# and the references therein
These universality predictions have been verified in sev
physical contexts. Notably in turbulence by Glazier a
Libchaber@35#.

As we will see in Sec. IV D, we do not expect that th
families obtained in Eq.~2.14! for mirrors oscillating with
different amplitudes belong to the same universality class
typical mappings, but they should have universality prop
ties that are easy to figure out from those of the above
erences.

F. Distribution of orbits

For the physical problem at hand it is also important
know how the iterates of the circle mapx°g(x)
ªG(x)(mod 1) are distributed. As we shall see in th
lemma in Sec. IV, if the iterates ofg are well distributed~in
an appropriate sense!, the energy of the field in the resonato
does not build up. The distribution of an orbit is convenien
formalized by using the concept of invariant measures.
recall that a measurem on X is invariant under the measur
able mapf :X→X if m„f 21(A)…5m(A) for each measurable
setA.

Given a pointxPS1, the frequency of visit of the orbit of
x to I ,S1 can be defined by

mx~ I !ª lim
n→`

#$ i u0< i<n and f i~x!PI %

n
. ~3.3!
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It is easy to check that if for every intervalI, the limit ~3.3!
exists, it defines an invariant measure describing the
quency of visit of the orbit ofx. Therefore, if there are orbit
that have asymptotic frequencies of visit, we can find inva
ant measures.

A trivial example of the existence of such measures
whenx is periodic. In such a case, the measuremx is a sum
of Dirac delta functions concentrated on the periodic or
The measure of an interval is proportional to the numbe
points in the orbit it contains. We also note that it is easy
construct systems~see, e.g.,@36#! for which the limits like
the one in Eq.~3.3! do not exist except for measures conce
trated on the fixed points, so that even the existence of s
equidistributed orbits is not obvious.

There are also relations going in the oppos
direction—if invariant measures exist, they imply the ex
tence of well-distributed orbits. We recall that the Krylo
Bogolyubov theorem@@17#, Theorem 4.1.1# asserts that any
continuous map on a compact metrizable space has an in
ant probability measure. Moreover, the Birkhoff ergod
theorem@@17#, Theorem 4.1.2# implies that given any invari-
ant measurem, the set of points for whichmx as in Eq.~3.3!
does not exist has measure zero.

Certain measures have the property thatmx5m for
m-almost all points. These measures are called ergodic. F
the physical point of view, a measure is ergodic if all t
points in the measure are distributed according to it.
maps of the circle, there are several criteria that allow us
conclude that a map is ergodic.

For rotations of the circle with an irrational rotation num
ber we recall the classical Kronecker-Weyl equidistributi
theorem@@17#, Theorem 4.2.1#, which shows that any irratio
nal rotation is uniquely ergodic, i.e., has only one invaria
measure—the Lebesgue measurem. ~Such uniquely ergodic
maps are ergodic because, by Birkhoff ergodic theorem,
limiting distribution has to exist almost everywhere, b
since there is only one invariant measure, all these invar
distributions have to agree with the original measure.! Thus,
the iterates of anyxPS1 under an irrational rotation are un
formly distributed on the circle.

For general nonlinear circle OPDs the situation may
quite different. As an example, consider Arnold’s mapha,b
~3.2!. If it is conjugate to an irrational rotation byh, i.e.,
ha,b5h21+r t(ha,b)+h, then there is a unique invariant prob
ability measurem defined for each measurable setA by
m(A)ªm„h(A)…. This implies that ifI is an interval inS1,
then the frequency with which a pointx visits I is equal to
m(I ).

On the other hand, ift(ha,b)5p/qPQ, then all orbits
are periodic or asymptotic to periodic. Thus, the only p
sible invariant measure is concentrated at the periodic po
and therefore singular, if the periodic points are isolated.
us now assume thata is very close totb

21(p/q), but does not
belong to it. Thenha,b has no periodic orbits, but still ther
exists a pointx which is ‘‘almost periodic,’’ i.e., the orbits
linger for an extremely long time near the poin
x,ha,b(x),...,ha,b

q21(x). So that, even if the invariant mea
sure is absolutely continuous, one expects that it is never
less quite peaked around the periodic orbit—see Fig. 5.
behavior of such maps is described quantitatively by the ‘
termittency theory’’@37#.
e-

i-

s

t.
f

o

-
ch

-

ri-

m

r
to

t

e
,
nt

e

-
ts
t

e-
e
-

The continuity properties of the measures of the circle
not so easy to ascertain. Nevertheless, there are certai
sults that are easy to establish.

In the case where we have a rational rotation number
isolated periodic orbits, some of them attracting and some
them repelling, the only possible invariant measures are m
sures concentrated in the periodic orbits.

For the irrational rotation number case, the Kroneck
Weyl theorem implies that all the maps with an irration
rotation number—since they are semiconjugate to a rota
by Poincare´ theorem—are uniquely ergodic. In the situatio
where Herman’s theorem applies, this measure will hav
smooth density since it is the push forward of Lebesgue m
sure by a smooth diffeomorphism.

We also recall that by the Banach-Alaoglu theorem a
the Riesz representation theorem, the set of Borel probab
measures is compact when we give it the topology ofmn

→m⇔mn(A)→m(A) for all Borel measurable setsA. ~This
convergence is called weak* convergence by functional ana
lysts and convergence in probability by probabilists.!

Lemma.If l is a parameter value for whichf l admits
only one invariant measureml , given ml i

invariant mea-

sures forf l i
, with l i→l, thenm i converges in the weak*

sense toml .
Note that we are not assuming thatf l i

are uniquely er-

godic. In particular, the lemma says that in the set
uniquely ergodic maps, the map that a parameter assoc
the invariant measure is continuous if we give the measu
the topology of weak* convergence.

Proof. Let ml i k
be a convergent subsequence. The lim

should be an invariant measure forf l . Hence, it should be
ml . It is an easy point set topology lemma that for functio
taking values in a compact metrizable space, if all sub
quences converge to the same point, then this point is a li
The space of measures with weak* topology is metrizable
because by Riesz representation theorem is the dual o
space of continuous functions with sup-norm, which is m
trizable.

We also point out that as a corollary of KAM theory@21#
we can obtain that for nondegenerate families, if we consi
the parameter values for which the rotation number is D
phantine with uniform constants, the measures are differ
tiable jointly onx and in the parameter.~For the differentia-
bility in the parameter, we need to use Whitne
differentiability or, equivalently, declare that there is a fam
ily of densities differentiable both inx and inl that agrees
with the densities for these values ofl.!

On the other hand, we point out that there are situati
where the invariant measure is not unique~e.g., a rational
rotation or a map with more than one periodic orbit!. In such
cases, it is not difficult to approximate them by maps in su
a way that the invariant measure is discontinuous in
weak* topology as a function of the parameter. The disco
tinuity of the measures with respect to parameters, as
shall see, has the physical interpretation that, by changing
oscillation parameters by arbitrarily small amounts, we c
go from unbounded growth in the energy to the energy
maining bounded.
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IV. APPLICATION TO THE RESONATOR PROBLEM

Now we return to the problem of a one-dimensional op
cal resonator with a periodically moving wall to discuss t
physical implications of circle maps theory, and illustra
with numerical results in an example.

A. Circle maps in the resonator problem

If we takea(t) to depend on two parameters,a andb, as
in Eq. ~2.2!, then, as we saw in Sec. II C, the time betwe
the consecutive reflections at the mirrors can be describe
terms of the functionsFa,b andGa,b defined by Eq.~2.14!.
These maps are lifts of circle maps that we will denote
f a,b andga,b . The restriction on the range ofb in Eq. ~2.2!
implies that f a,b and ga,b are analytic circle OPDs. There
fore, we can apply the results about the types of orbits
OPHs ofS1, Poincare´ and Denjoy theorems, as well as th
smooth conjugacy results and the facts about the distribu
of orbits.

In an application where the motion of the mirror@i.e.,
a(t)# is given, one needs to computeFa,b andGa,b ~2.14!,
which cannot be expressed explicitly froma(t), but they
require only to solve one variable implicit equation. In t
numerical computations we used the subroutineZEROIN @38#
to solve implicit equations. Ify5Fa,b(t) and z5Ga,b(t),
then fora(t) given by Eq.~2.2!, y andz are given implicitly
by

2y1t1a12b sin@p~y1t !#50,

2z1t1a1b@sin~2pt !1sin~2pz!#50.

Given t, we can findy, zapplyingZEROIN.

B. Rotation number, phase locking

In this section, our goal is to translate the mathemat
statements from the theory of circle maps into physical p
dictions for the resonator problem.

The theory of circle maps guarantees that the measur
the frequency-locking intervals forga,b is small whenb is
small and becomes 1 whenb51/2p. The theory also guar
antees for analytic maps that, unless a power of the ma
the identity, the frequency-locking intervals are nontrivi
For the example that we have at hand, it is very easy
verify that this does not happen and, therefore, we can
dict that there will be frequency-locking intervals and that
the amplitude of the oscillations of the moving mirror i
creases so that the maximum speed of the moving mi
reaches the speed of light, the devil’s staircase becomes c
plete. Figure 3 shows a part of the complete dev
staircase—the situation which happens when the mapsga,b
and f a,b lose their invertibility, i.e., forb51/2p.

We also recall that the theory of circle maps makes p
dictions about what happens for nondegenerate ph
locking intervals. Namely, for parameters inside the pha
locking interval, the map has a periodic fixed point and
Lyapunov exponent is smaller than 0, while at the edges
the phase-locking interval the map experiences a nonde
erate saddle-node bifurcation—provided that certain com
nations of the derivatives do not vanish@27#.
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We note that for parameters for which the map is in no
degenerate frequency locking, i.e.,t(ga,b)5p/q and the at-
tractive periodic point of periodq has a negative Lyapuno
exponent,$Ga,b

nq (x)%n50
` will converge exponentially to the

fixed point for all x in a certain interval, according to th
results about the types of orbits of circle maps~Sec. III B!.
The whole circle can be divided into such intervals and
finite number of periodic points. Therefore, the graph
Ga,b

nq , and hence ofga,b
nq , will look—up to errors exponen-

tially small in n—like a piecewise-constant function wit
values~up to integers! in the fixed points ofga,b

q —see Fig. 4.
The fact that certain functions tend to piecewise-const
functions for large values of the argument~which follows
from what we found aboutGa,b

nq for large n! was observed
numerically for particular motions of the mirror in@6,4#. In
physical terms, this means that the rays will be getting clo
and closer together, so over time the wave packets will
come narrower and narrower and more and more sha

FIG. 3. A part of the graph oft(ga,1/2p) vs a.

FIG. 4. Development of the piecewise-constant structure
g0.2545,0.1

6n ~the rotation number ofg0.2545,0.1 is 1/6!. Graphs of
g0.2545,0.1

6n are plotted forn51 ~dotted line!, n55 ~dashed line!, n
510 ~long dashed line!, andn5100 ~solid line!.
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peaked. The number of wave packets is equal toq. The num-
ber of reflections from the moving mirror per unit time w
tend to the inverse of the rotation number. In the next sec
we discuss how this yields an increase of the field ene
which happens exponentially fast on time.

The fact that fort(ga,b)PQ the rays approach periodi
orbits, is also interesting from a quantum-mechanical po
of view due to the relation between the periodic orbits in
classical system and the energy levels of the correspon
quantum system, given by the Gutzwiller’s trace formu
~see, e.g.,@39#!.

We also note that we expect that slightly away from t
edges of a phase-locking interval, the invariant density w
be sharply peaked around the points in which it was conc
trated in the phase-locking intervals. This is described by
‘‘intermittency theory’’ @37#.

To observe numerically in our example what happe
whena enters or leaves a frequency-locking interval, we
Nb(v)ª$aP@0,1)ut(ga,b)5v%. Figure 5 represents th
probability density of visit of the iterates,dm/dm. The figure
showsdm/dm for a close to the left end ofN0.1(1/6). When
a approaches~from the left! the left end of N0.1(1/6),
dm/dm becomes sharply peaked at some points, and whea
enters the frequency-locking interval, the invariant meas
becomes singular (ga,0.1 undergoes tangent bifurcation ata
50.253 977...). All seems to be consistent with the conj
ture that all the frequency-locking intervals in the fam
~away of b50) are nondegenerate, i.e., that at the bou
aries of the phase-locking intervals the map satisfies the
pothesis of the saddle-node bifurcation theorem.

C. Doppler shift

One of the most interesting parts of the applications
circle map theory is the ease with which we can describe
effect on the energy after repeated reflections.

Recall that in Sec. II D, we found the time dependence
the field energy under the assumption that at timet all rays
are going to the right. This assumption is not very restrict
in the case of a rational rotation number since, as we fo

FIG. 5. Density of the invariant measures forb50.1 anda
50.253 ~dashed line!, a50.2539 ~solid line!, and a50.253975
~dotted line!.
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in Sec. IV B, the field develops wave packets that beco
narrower with time, so Eqs.~2.22! and ~2.23! hold for the
asymptotic behavior of the energy. Note that Eq.~2.22! ex-
presses the Doppler-shift factor in terms of the derivatives
the mapG. This gives a very close relation between t
dynamics and the behavior of the wave packets.

Proposition 1.Let a and b be such thatt(ga,b)5p/q,
and that the mapGªGa,b has a stable periodic orbitQq
5$u1 ,...,uq% such that (Gq)8(u1),1. Assume that the ini-
tial electromagnetic field in the cavity is not zero at som
space-time point for which the phase of the first reflect
from the moving mirror is in the basin of attraction ofQq .

Then the energy of the field in the resonator will be a
ymptotically increasing at an exponential rate:

E~ t !;expH ln D~Qq!

p
tJ . ~4.1!

Remark 1.Dr. N. Gonzalez has kindly informed us that
his thesis@40# he has proved that if (Gq)8(u1)51 ~and some
additional conditions are satisfied!, the energy increase
polynomially.

Proof.First, notice that the number of reflections from th
moving mirror per unit time reaches a well-defined limit~one
and the same for rays!—the inverse of the rotation numbe
Secondly, as was discussed in Sec. II, at reflection from
moving mirror at phaseu, a wave packet becomes narrow
by a factor ofD(u) @Eq. ~2.11!#, which leads to aD(u)
times increase in its energy. Asymptotically, the phases
reflection will approach the stable periodic orbitQq
5$u1 ,...,uq% of gab . The Doppler factors at reflection wil
tend correspondingly to$D(u1),...,D(uq)% @Eq. ~2.11!#.
Hence, in timep each ray will undergoq reflections from the
moving mirror, the total Doppler shift factor along the pe
odic orbit Qq being

D~Qq!ª)
i 51

q

D~u i !5)
i 51

q
12a8~u i !

11a8~u i !
.

On the other hand, the definition of the mapG as the
advance in the time between successive reflections from
moving mirror yieldsu i5Gi 21(u1). The chain rule applied
to the explicit expression~2.14! for G yields

~Gq21!8~u1!5 )
j 51

q21

G8~u j !5 )
j 51

q21
11a8~u j !

12a8~u j 11!
,

which gives the following expression forD(Qq) @cf. Eq.
~2.22!#:

D~Qq!5
12a8~u1!

11a8~uq!
@~Gq21!8~u1!#21

5
12a8~u1!

11a8~uq!
~G12q!8~uq!. ~4.2!

Hence, the energy density grows by a factor ofD(Qq)2.
Since afterq reflections the wave packet is concentrated in



a

nc
a-
ri-
E

6

e

iv

ic

-
ai

of

iant
etic

ar-

ns

rgy

an

the
n-
a
in-

ith

ely
o a
nd,

an
s
in-

f
und

to
at

ge-
r a
ed
an-
the
f

y to
ons
ca-

6648 PRE 59RAFAEL de la LLAVE AND NIKOLA P. PETROV
length D(Qq) times smaller, the total energy grows by
factor of D(Qq) in p units of time, which implies Eq.~4.1!.

The quantities (Gn)8(u) that appear in Eq.~4.2! have
been studied intensively in dynamical systems theory si
they control the growth of infinitesimal perturbations of tr
jectories. Similarly, they are factors that multiply the inva
ant densities when they get transported, as we will see in
~4.3!.

We found numerically the total Doppler factorsD(Qq)
for some particular choices of the parameters. In Fig.
log10D(Q6) is shown for different values ofb and for a
PNb(1/6). Obviously, the maximum value ofD(Q6) de-
pends strongly onb, becoming infinite forb51/2p and
someaPN1/2p(1/6). For smaller values ofb, the Doppler
factor is much smaller. Moreover, the width of th
frequency-locking intervals for smallb is small, so the prob-
ability of hitting a frequency-locking interval with arbitrarily
chosena andb is small.@The likelihood of frequency lock-
ing for the Arnold’s map~3.2! is studied numerically in
@30#.#

In the case when Herman’s theorem applies the der
tives of Gn are bounded independently ofn, which causes
the energy of the system to be bounded for all times, wh
is proved in the following proposition.

Proposition 2.If Ga,b is such that it satisfies the hypoth
esis of Herman’s theorem, then the energy density rem
bounded for all times.

Proof. In such a caseGa,b5h21+R+h with h differen-
tiable and R a rotation by t(ga,b). Therefore, Ga,b

n

5h21+Rn+h and

~Ga,b
n !8~u!5~h21!8„Rn+h~u!…~Rn!8„h~u!…h8~u!

5~h21!8„Rn+h~u!…h8~u!,

because (Rn)851. The two factors on the right-hand side
the above equation are bounded uniformly inu andn. Thus,

FIG. 6. A log-linear graph of the total Doppler factor forga,b in
the phase-locking interval of rotation number 1/6 for differentb.
The insert@linear-linear graph ofD(Q6) vs a2ac# calls attention
to the square-root behavior at edges;ac is the value ofa at the left
end ofN0.14(1/6).
e

q.

,

a-

h
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the ‘‘local Doppler factors’’~2.22! will be bounded, which
implies the boundedness of the energy~2.23!.

There is an interesting connection between the invar
densities of the system and the growth of the electromagn
energy density.

Recall that if a density m is invariant, m„G(u)…
5m(u)/G8(u). Hence, if the densitym never vanishes,
G8(u)5m(u)/m„G(u)… and, therefore, (Gi)8(u)
5m(u)/m„Gi(u)…. Let us assume that there is only one ch
acteristic passing through the space-time point~t,x!, and this
characteristic is going to the right. Then, using the notatio
of Sec. II C, we can write the energy density at~t,x! as @cf.
Eq. ~2.22!#,

T00~ t,x!5F12a8~u2n2

2 !

11a8~u0
2!

m„Gn2~u2n2

2 !…

m~u2n2

2 ! G 2

T00~ t0 ,x0
2!.

~4.3!

In the general case@with two characteristics through~x,t!#,
one can use Eqs.~2.18! and ~2.21! to prove the following
result:

Lemma.If a system has an invariant densitym, which is
bounded away from zero, then the electromagnetic ene
density ofC1 initial A, At is smaller thanCm2 for all times.

In the cases that Herman’s theorem applies, there is
invariant density bounded away from zero~and also
bounded!. Hence, we conclude that there are values of
amplitude of mirror’s oscillations for which the energy de
sity of the field remains bounded. This set is typically
Cantor set interspersed with values for which the energy
creases exponentially.

Some other results about the behavior of the energy w
respect to time and parameters are obtained in@2,40,41#.

We call attention to the fact that@21# contains examples
of analytic maps whose rotation numbers are very clos
approximated by rationals and that are arbitrarily close t
rotation such that they preserve no invariant density a
therefore, are not smoothly conjugate to a rotation.

It is also known that for all rotation numbers one c
constructC22« maps arbitrarily close to rotations with thi
rotation number and such that they do not preserve any
variant measures@26#. It is a testament to the ubiquity o
these maps that these questions were motivated and fo
applications in the theory of classification ofC* algebras.

D. The behavior for small amplitude and universality

We note that, even if all the motions of the mirror lead
a circle map as in Eq.~2.15!, it does not seem clear to us th
all the maps of the circle can appear asF, G for a certaina.
This makes it impossible to conclude that the theory of
neric circle maps applies directly to obtain conclusions fo
generic motion of the mirror. Therefore, the very develop
mathematical theory of generic or universal circle maps c
not be applied without caution to maps that appear as
result of generic or universal oscillations of the mirror. O
course, all the conclusions of the general theory that appl
all maps of the circle apply to our case. Those conclusi
that require nondegeneracy assumptions will need verifi
tion of the assumptions.
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One aspect that we have found makes a big differe
with the generic theory is the situation where the mirror
cillates with small amplitude, i.e.,a«(t)5ā1«b(t) with b a
periodic function of zero average and period 1, and«!1.
The first parameterā is the average length of the resonato
while «50 is called the ‘‘nonlinearity parameter’’ for obvi
ous reasons. If we denote byFā,« andGā,« the corresponding
two-parameter families of maps of the circle constructed
cording to Eq.~2.14!, then we have, for three times differen
tiable families,

Fā,«~ t !5t12ā12«b~ t1ā!12«2b8~ t1ā!b~ t1ā!

1O~«3!,

Gā,«~ t !5t12ā1«@b~ t !1b~ t12ā!#1«2b8~ t12ā!

3@b~ t !1b~ t12ā!#1O~«3!. ~4.4!

Note that the term of order« always has a vanishing averag
As we will immediately show, this property causes that so
well-known generic properties of families of circle mappin
do not hold for families of maps constructed as in Eq.~2.14!.

Indeed, if we consider the expressions for small amplitu
developed in Eq.~4.4!, we can write the maps as

H«~ t !5t12ā1«H1~ t !1«2H2~ t !1O~«3!.

Since the conclusions of the theory of circle maps are in
pendent of the coordinate system chosen, it is natural to
to choose a coordinate system where these expressions a
simple as possible. Hence, we chooseh«(t)ªt1«h(t), a
perturbation of the identity, and considerh«

21+H«+h« , which
is just H« in another system of coordinates, related to
original one byh« . Then, up to terms of order«3, we have

h«
21+H«+h«~ t !5t12ā1«@h~ t !2h~ t12ā!1H1~ t !#

1«2$h8~ t12ā!h~ t12ā!2h8~ t12ā!

3@h~ t !1H1~ t !#1H18~ t !h~ t !1H2~ t !%.

~4.5!

We would like to chooseh in such a way that the« term is
not present. Note that since*h(t12ā)dt5*h(t)dt, this is
impossible unless*H1(t)dt50. When*H1(t)dt50, H1 is
smooth and 2ā is Diophantine, a well-known result~see,
e.g., @@16#, Sec. XIII.4#! shows that in such a case we c
obtain oneh satisfying

h~ t !2h~ t12ā!1H1~ t !50 ~4.6!

andh̄50. @Suchh is conventionally obtained by using Fou
rier coefficients. Note that in Fourier coefficients, Eq.~4.6!
amounts toĥk(e

2p ik2ā21)5(H 1̂)k . If H1 is smooth, the
Fourier coefficients decrease fast and if 2ā is Diophantine,
then (e2p ik2ā21)21 does not grow too fast. For more deta
we refer to the reference above.#

Since for the functionsFā,« andGā,« the term of order«
has a zero average, we can transform these functions
e
-

,

-

e

e

-
ry
e as

e

to

lifts of rotations plusO(«2). This implies, in particular, that
their rotation number ist(Fā,«)5t(Gā,«)52ā1O(«2).
One could wonder if it would be possible to continue t
process and eliminate also to order«2.

If we look at the «2 terms in Eq. ~4.5!, we see that
h8(t)h(t)50, and, whenh is chosen as in Eq.~4.6!,

h8~ t12ā!@h~ t !1H1~ t !#5h8~ t12ā!h~ t12ā!,

which also has average zero. Therefore, a necessary co
tion for the «2 term in h«

21+H«+h«(t) to be zero is
H18(t)h(t)1H2(t)50.

For theFā,« in Eq. ~4.4! we see thatF2 has zero average
Nevertheless, the termF18(t)h(t) does not, in general, hav
average zero as can be seen in examples. Hence, we se
the rotation number indeed changes by an order which
O(«2) and not higher in general. This property is not gene
for families of circle maps starting with a rotation 2ā and it
puts them outside of the universality classes considere
@32,34#, etc., since the correspondence between rota
numbers and parameters is not the same.

According to the geometric picture of renormalization d
veloped in @34#, the space of circle maps is divided int
slices of rational rotation numbers, which are—in approp
ate sense—parallel. In that language—in which we think
families of circle maps as curves in the space of mapping
the families of advance mapsFā,« and Gā,« ~for fixed ā)
have second-order tangency to the foliation of rational ro
tion numbers rather than being transversal. Hence, the s
ing predicted by universality theory should be true for«2 in
place of«. We have not verified this prediction, but we e
pect to come back to it soon.

E. Schwarzian derivative in the problem of moving mirrors

Fulling and Davies@9# calculated the energy-momentu
tensor in the two-dimensional quantum field theory of
massless scalar field influenced by the motion of a perfe
reflecting mirror ~see also@42#!. They obtained that the
‘‘renormalized’’ vacuum expectation value of the ener
density radiated by a moving mirror into initially empt
space is

T00~u!52
1

24p FF-~u!

F8~u!
2

3

2 S F9~u!

F8~u! D
2G ,

whereu5t2x, andF is related to the law of the motion o
the mirror, x5a(t), by Eq. ~2.14!. The right-hand side of
this equation is nothing but~up to a constant factor! the
Schwarzian derivative ofF—a differential operator tha
naturally appears in complex analysis, e.g., it is invari
under a fractional linear transformation; vanishing Schw
zian derivative of a function is the necessary and suffici
condition that the function is fractional linear transformatio
etc. More interestingly, the Schwarzian derivative has b
used as an important tool in the proof of several import
theorems in the theory of circle maps—see, e.g.,@24,43#. In
the light of the connection between the solutions of the wa
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equation in a periodically pulsating domain and the theory
circle maps it is not impossible that this is not just a coin
dence.

V. CONCLUSION

Using the method of characteristics for solving the wa
equation, we reformulated the problem of studying the el
tromagnetic field in a resonator with a periodically oscilla
ing wall into the language of circle maps. Then we us
some results of the theory of circle maps in order to ma
predictions about the long-time behavior of the field. W
found that many results in the theory of circle maps hav
directly observable physical meaning. Notably, for a typi
family of mirror motions we expect that the electromagne
energy grows exponentially fast in a dense set of interval
the parameters. Nevertheless, it remains bounded for
times for a Cantor set of parameters that has positive m
sure.
at
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There are several advantages of the approach prese
here. First, it allows us to understand better the time evo
tion of the electromagnetic field in the resonator and
mechanism of the change in the field energy. Second,
predictions are based on the general theory of circle map
they are valid for any periodic motion of the mirror; let u
also emphasize that our method is nonperturbative. Last,
not least, for a given motion of the mirror, one can eas
make certain predictions about the behavior of the field
simply calculating the rotation number of the correspond
circle map, and without solving any partial differential equ
tions.
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